
APPENDIX A

Musquapsink Brook Watershed Restoration and Protection Plan Data Report

Musquapsink Brook Watershed Restoration and Protection Plan: DATA REPORT

Developed by the Rutgers Cooperative Extension Water Resources Program

Funded by the New Jersey Department of Environmental Protection RP 07–002

August 2011

Acknowledgements

This document has been produced by the Rutgers Cooperative Extension (RCE) Water Resources Program (more information at <u>www.water.rutgers.edu</u>). Data collection was carried out by staff from the RCE Water Resources Program and project partners including the Bergen County Health Department, the Bergen County Utilities Authority, and Marion McClary, Jr., Ph.D. of Fairleigh Dickinson University.

Table of Contents

LIST OF FIGURES	4
LIST OF TABLES	4
WATERSHED OVERVIEW	5
PROJECT BACKGROUND AND THE TMDL DEVELOPMENT PROCESS	8
BIOLOGICAL MONITORING DATA 1	0
NEW JERSEY IMPAIRMENT SCORE (NJIS)	
STREAM VISUAL ASSESSMENT PROTOCOL (SVAP) DATA COLLECTED IN THE MUSQUAPSINK BROOK WATERSHED	5
INTRODUCTION TO SVAP	6
SVAP DATA	1
WATER QUALITY SAMPLING OVERVIEW 2	1
DATA RESULTS AND COMPARISON TO WATER QUALITY CRITERIA	6
MST DATA IN THE MUSQUAPSINK BROOK WATERSHED	9
METHODS	
DATA SUMMARY	4
REFERENCES	5
APPENDIX A: MUSQUAPSINK BROOK BENTHIC DATA REPORT & SPECIES LIST, MARION MCCLARY, JR., PH.D., FAIRLEIGH DICKINSON UNIVERSITY	7
APPENDIX B: TABULATED STREAM VISUAL ASSESSMENT PROTOCOL (SVAP) DATA 3	8
APPENDIX C: QUALITY ASSURANCE PROJECT PLAN, RP 07-002 MUSQUAPSINK BROOK WATERSHED RESTORATION PLAN, RUTGERS COOPERATIVE EXTENSION WATER RESOURCES PROGRAM	
APPENDIX D: TABULATED WATER QUALITY MONITORING DATA	
APPENDIX E: PRESENTATION OF GRAPHED INSTREAM WATER QUALITY DATA 4	

List of Figures

Figure 1:	Land use/ land cover map	6
Figure 2:	Land use/land cover types and relative distribution	6
Figure 3:	Municipalities and waterbodies located within the Musquapsink Brook	
	1	
Figure 4:	Manure presence at 3 rd Street in the Musquapsink Brook Watershed	8
Figure 5:	Stream visual assessment reaches with scores in the Musquapsink Brook	
Watershee	1	9
	1	
Figure 6:		25
Figure 6: Figure 7:	Water quality sampling location map2	25 26
Figure 6: Figure 7: Figure 8:	Water quality sampling location map	25 26 31

List of Tables

Table 1:	Summary of NJDEP Ambient Biological Monitoring Network results	14
Table 2:	SVAP assessment elements and data	20
Table 3:	Water quality monitoring events	23
Table 4:	Water quality monitoring location IDs and descriptions	25
Table 5:	Water quality criteria according to N.J.A.C. 7:9B (NJDEP, 2006a)	28
Table 6:	Summary of water quality data collected and comparison to water quality	
criteria		29
Table 7:	Primers and probes used for the MST effort	32
Table 8:	Frequency of detection of AllBac, HuBac (human), or BoBac (bovine) target	
sequence	·S	33

Watershed Overview

The Musquapsink Brook Watershed, located above U.S. Geological Survey (USGS) streamflow gauge #01377499 at River Vale, is approximately nine square miles in size and is dominated by urban land uses (Figure 1). The New Jersey Department of Environmental Protection (NJDEP) 2002 land use data identifies the urban land uses as primarily consisting of residential (medium and low density), commercial, and roadways (Figure 2). The remainder of the land use consists of forest, wetlands, water bodies, agriculture, and barren land (NJDEP, 2007).

The Musquapsink Brook Watershed encompasses part of Woodcliff Lake Borough, Saddle River Borough, Hillsdale Borough, Washington Township, Westwood Borough, Emerson Borough, Paramus Borough, and Oradell Borough (Figure 3). The Musquapsink Brook is approximately 6.6 river miles from the headwaters to its confluence with the Pascack Brook. The largest surface water body in the drainage area is Schlegel Lake, which encompasses 26.5 acres.

Under certain conditions, United Water of New Jersey (UWNJ) diverts water from the Saddle River to the Oradell Reservoir through the Musquapsink Brook. UWNJ records show that during the period between June 1, 2007 and December 31, 2007 a total of 551 million gallons of river water was transferred.

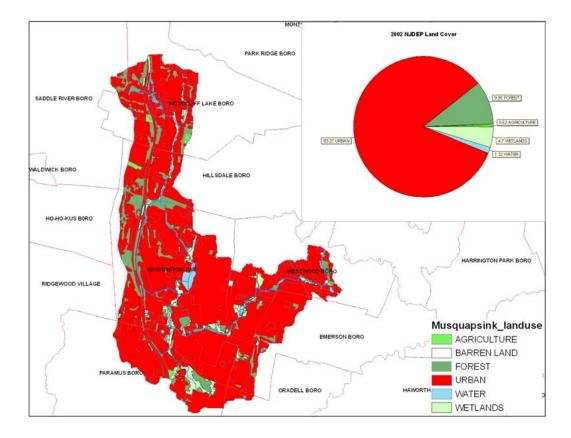


Figure 1: Land use/ land cover map

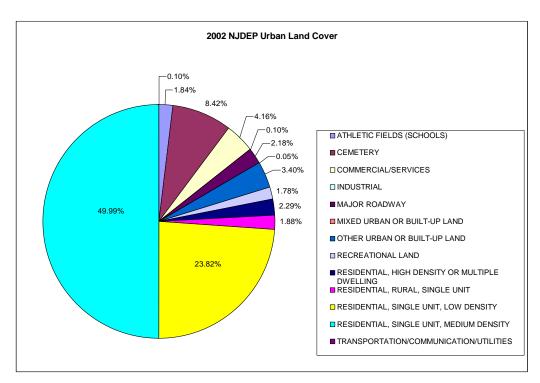


Figure 2: Land use/ land cover types and relative distribution

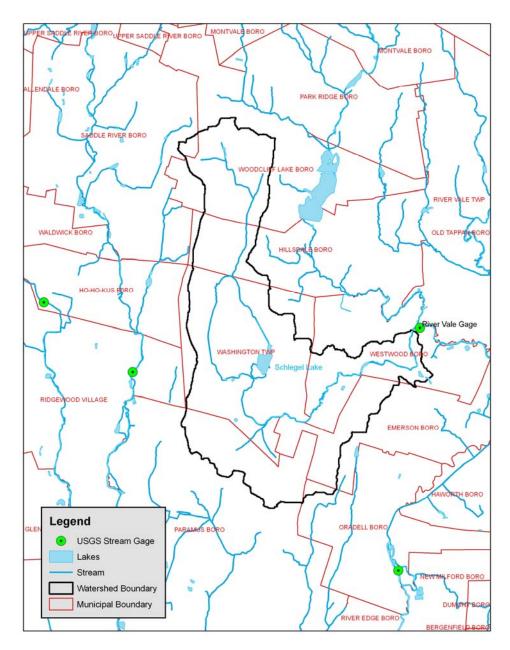


Figure 3: Municipalities and waterbodies located within the Musquapsink Brook Watershed

Project Background and the TMDL Development Process

The development of the Musquapsink Brook Watershed Restoration and Protection Plan was funded in 2007 by the NJDEP (RP 07-002). The project has been established to address a fecal coliform impairment that has been identified in the total maximum daily load (TMDL) developed based on data collected in the Musquapsink Brook at the US Geological Survey (USGS) monitoring station at River Vale (USGS 01377499).

TMDLs are developed by the NJDEP, and approval is given by the US Environmental Protection Agency (USEPA). In accordance with Section 305(b) of the Clean Water Act, New Jersey addresses the overall water quality of the State's waters and identifies impaired waterbodies through the development of a document referred to as the *Integrated List of Waterbodies* (NJDEP, 2006). Within this document are lists that indicate the presence and level of impairment for each waterbody monitored. The lists are defined as follows:

- **Sublist 1** suggests that the waterbody is meeting water quality standards.
- Sublist 2 states that a waterbody is attaining some of the designated uses, and no use is threatened. Furthermore, Sublist 2 suggests that data are insufficient to declare if other uses are being met.
- **Sublist 3** maintains a list of waterbodies where no data or information are available to support an attainment determination.

• **Sublist 4** lists waterbodies where use attainment is threatened and/or a waterbody is impaired; however, a TMDL will not be required to restore the waterbody to meet its use designation.

Sublist 4a includes waterbodies that have a TMDL developed and approved by the USEPA, that when implemented, will result in the waterbody reaching its designated use.

Sublist 4b establishes that the impaired reach will require pollutant control measurements taken by local, state, or federal authorities that will result in full attainment of designated use.

Sublist 4c states that the impairment is not caused by a pollutant, but is due to factors such as instream channel condition and so forth. It is recommended by the USEPA that this list be a guideline for water quality management actions that will address the cause of impairment.

• **Sublist 5** clearly states that the water quality standard is not being attained and requires a TMDL.

Biological monitoring data is available for one location at the outlet of the Musquapsink Brook as part of the Ambient Biological Monitoring Network (AMNET), which is administered by the NJDEP. Based upon AMNET and other monitoring sources, water quality impairments have been identified in the Musquapsink Brook. According to the New Jersey 2004 Integrated Water Quality Monitoring and Assessment Report, the Musquapsink Brook has been cited with the following listings:

• Sublist 3 - No data or information are available to support attainment determination: cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc;

- Sublist 4 Attainment is threatened or waterbody is impaired; a TMDL has been developed and/or approved <u>or</u> pollution control measures do not require a TMDL: fecal coliform;
- Sublist 5 Water quality standard is not being attained and requires a TMDL: aquatic life, total phosphorus, and arsenic. Arsenic will be addressed by the NJDEP and will not be a focus of this project.

Based on the TMDL prepared for the Musquapsink Brook at River Vale, USGS 01377499, a 96% reduction in fecal coliform load for 6.6 miles of stream is needed (NJDEP, 2003). Additional aquatic life and total phosphorus surface water quality impairments will also need to be addressed through the TMDL process.

Biological Monitoring Data

Biological monitoring data is available for the Musquapsink Brook Watershed as part of the AMNET program administered by NJDEP. The NJDEP has been monitoring the biological communities of the State's waterways since the early 1970's, specifically the benthic macroinvertebrate communities. Benthic macroinvertebrates are primarily bottom-dwelling (benthic) organisms that are generally ubiquitous in freshwater and are Due to their important role in the food web, macroinvertebrate macroscopic. communities reflect current perturbations in the environment. There are several advantages to using macroinvertebrates to gauge the health of a stream. Macroinvertebrates have limited mobility, and thus, are good indicators of site-specific water conditions. Macroinvertebrates are sensitive to pollution, both point and nonpoint sources; they can be impacted by short-term environmental impacts such as intermittent discharges and contaminated spills. In addition to indicating chemical impacts to stream quality, macroinvertebrates can gauge non-chemical issues of a stream such as turbidity and siltation, eutrophication, and thermal stresses. Macroinvertebrate communities are a holistic overall indicator of water quality health, which is consistent with the goals of the Clean Water Act (NJDEP, 2007a). Finally, these organisms are normally abundant in New Jersey freshwaters and are relatively inexpensive to sample.

New Jersey Impairment Score (NJIS)

The AMNET program began in 1992 and is currently comprised of more than 800 stream sites with approximately 200 monitoring locations in each of the five major drainage basins of New Jersey (i.e., Upper and Lower Delaware, Northeast, Raritan, and Atlantic). These sites are sampled once every five years using a modified version of the USEPA Rapid Bioassessment Protocol (RBP) II (NJDEP, 2007a). To evaluate the biological condition of the sampling locations, several community measures have been calculated by the NJDEP from the data collected and include the following:

- 1. <u>Taxa Richness</u>: Taxa richness is a measure of the total number of benthic macroinvertebrate families identified. A reduction in taxa richness typically indicates the presence of organic enrichment, toxics, sedimentation, or other factors.
- 2. <u>EPT (Ephemeroptera, Plecoptera, Trichoptera) Index</u>: The EPT Index is a measure of the total number of Ephemeroptera, Plecoptera, and Trichoptera families (i.e., mayflies, stoneflies, and caddisflies) in a sample. These organisms typically require clear moving water habitats.
- 3. <u>% EPT</u>: Percent EPT measures the numeric abundance of the mayflies, stoneflies, and caddisflies within a sample. A high percentage of EPT taxa is associated with good water quality.
- 4. <u>% CDF (percent contribution of the dominant family)</u>: Percent CDF measures the relative balance within the benthic macroinvertebrate community. A healthy community is characterized by a diverse number of taxa that have abundances somewhat proportional to each other.
- 5. <u>Family Biotic Index</u>: The Family Biotic Index measures the relative tolerances of benthic macroinvertebrates to organic enrichment based on tolerance scores assigned to families ranging from 0 (intolerant) to 10 (tolerant).

This analysis integrates several community parameters into one easily comprehended evaluation of biological integrity referred to as the New Jersey Impairment Score (NJIS). The NJIS was established for three categories of water quality bioassessment for New Jersey streams: non-impaired, moderately impaired, and severely impaired. A non-impaired site has a benthic community comparable to other high quality "reference" streams within the region. The community is characterized by maximum taxa richness, balanced taxa groups, and a good representation of intolerant individuals. A moderately impaired site is characterized by reduced macroinvertebrate taxa richness, in particular the EPT taxa. Changes in taxa composition result in reduced community balance and intolerant taxa become absent. A severely impaired site is one in which the benthic community is significantly different from that of the reference streams. The macroinvertebrates are dominated by a few taxa which are often very abundant. Tolerant taxa are typically the only taxa present. The scoring criteria used by the NJDEP are as follows:

- non-impaired sites have total scores ranging from 24 to 30,
- moderately impaired sites have total scores ranging from 9 to 21, and
- severely impaired sites have total scores ranging from 0 to 6.

It is important to note that the entire scoring system is based on comparisons with reference streams and a historical database consisting of 200 benthic macroinvertebrate samples collected from New Jersey streams. While a low score indicates "impairment," the score may actually be a consequence of habitat or other natural differences between the subject stream and the reference stream.

Starting with the second round of sampling under the AMNET program in 1998 for the Northeast Basin, habitat assessments were conducted in conjunction with the biological assessments. The first round of sampling under the AMNET program did not include habitat assessments. The habitat assessment, which was designed to provide a measure of habitat quality, involves a visually based technique for assessing stream habitat structure. The habitat assessment is designed to provide an estimate of habitat quality based upon qualitative estimates of selected habitat attributes. The assessment involves the numerical scoring of ten habitat parameters to evaluate instream substrate, channel morphology, bank structural features, and riparian vegetation. Each parameter is scored and summed to produce a total score which is assigned a habitat quality category of optimal, sub-optimal, marginal, or poor. Sites with optimal/excellent habitat conditions have total scores ranging from 160 to 200; sites with suboptimal/good habitat conditions have total scores ranging from 60 to 109, and sites with poor habitat conditions have total scores less than 60. The findings from the habitat assessment are used to interpret survey results and identify obvious constraints on the attainable biological potential within the study area.

The NJDEP Bureau of Freshwater & Biological Monitoring maintains one AMNET station within the project area (i.e., Station AN0206 – Musquapsink Brook, Harrington Avenue, Westwood Borough, Bergen County). This station corresponds with the water quality monitoring station MB6. Station AN0206 was sampled by NJDEP in 1993, 1998, and 2003 under the AMNET program. Findings from the AMNET program are summarized in Table 1. The biological condition over the years has been assessed as being moderately impaired, and the habitat has ranged from marginal to sub-optimal within the Musquapsink Brook Watershed.

Station	Date	Biological Condition (Score)	Habitat Assessment (Score)
AN0206	7/6/1993	Moderately Impaired (9)	~
AN0206	7/9/1998	Moderately Impaired (15)	Marginal (104)
AN0206	7/1/2003	Moderately Impaired (15)	Suboptimal (147)

 Table 1: Summary of NJDEP Ambient Biological Monitoring Network results

 (NJDEP, 1994; NJDEP, 2000; NJDEP, 2008)

The 2007 Biological Assessment by Marion McClary, Jr., Ph.D.

Given these aquatic life impairments, an additional biological assessment was proposed as part of the data collection needed to prepare a comprehensive watershed restoration and protection plan for the Musquapsink Brook. A biological assessment was conducted by Marion McClary, Jr., Ph.D., Associate Director of Biological Sciences at Fairleigh Dickinson University and project partner, in the late summer of 2007 at MB1 (Musquapsink Brook at Hillside Avenue, Hillsdale), MB3 (Musquapsink Brook at Ridgewood Avenue, Washington), MB4 (Musquapsink Brook at Forest Avenue, Westwood), and at MB6 (AMNET Station AN0206, Musquapsink Brook at Harrington Avenue, Westwood). The 2007 biological assessment conducted Dr. McClary is summarized in the Musquapsink Brook Benthic Data Report and Musquapsink Brook Benthic Species List provided in Appendix A of the Musquapsink Brook Watershed Restoration Plan Data Report. The 2007 assessment revealed that the biological condition within the Musquapsink Brook Watershed had degraded to a severely impaired condition. Marginal to sub-optimal habitat conditions were found within the watershed. There was such a paucity of benthic organisms found that less than 100 specimens were collected from the four sampling locations combined, prohibiting the calculation of the various metrics needed for the NJIS score.

Stream Visual Assessment Protocol (SVAP) Data Collected in the Musquapsink Brook Watershed

Introduction to SVAP

Among the hierarchy of tools used to characterize watershed health, the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Stream Visual Assessment Protocol (SVAP) is one method that fills this need. SVAP was originally developed for use by the landowner (USDA, 1998), but it has proved to also be useful by those familiar with the river system and flooding occurrences. The protocol provides an outline on how to quantitatively score in-stream and riparian qualities that includes water appearance, channel condition, and riparian health. There are 10 primary SVAP elements:

- channel condition,
- hydrologic alternation,
- riparian zone,
- bank stability,
- water appearance,

- nutrient enrichment,
- barriers to fish movement,
- instream fish cover,
- presence of pools, and
- invertebrate habitat

In addition, there are elements that should only be scored if applicable. These are canopy cover, manure presence, salinity, riffle embeddedness, and observed macroinvertebrates. Elements are scored 1 to 10 (poor to excellent) with the exception of observed macroinvertebrates, which uses a scale ranging from 1 to 15. The range of scores is qualitatively described as follows:

- < 6.0 is Poor;
- 6.1-7.4 is Fair;
- 7.5-8.9 is Good;
- 9.0 is Excellent.

The SVAP data sheet was modified to include other reach features that could aid pollution source trackdown in the Musquapsink Brook Watershed. These reach features include the identification of pipes and ditches, details as to erosion or impairment caused by the pipes or ditches, and access to stream reach for restoration. Additionally, all assessed reaches were photo-documented, and a sketch was made denoting important reach characteristics.

SVAP in the Musquapsink Brook Watershed

The visual assessment process in the Musquapsink Brook Watershed began in April 2007. In March 2006, all project partners were trained in using SVAP at the RCE Water Resources Program's SVAP Workshop. The training workshop consisted of a full day of SVAP introduction and use, and the workshop included presentations in a classroom setting and group and paired exercises in the field. Additional training included instructions on how to use the RCE online database entry system for the SVAP data. The Bergen County Department of GIS (geographic information systems) also developed an application to fill out SVAP data on a hand held ArcPad unit, which was used for this project. The Musquapsink Brook watershed was then divided into a grid; grids were assigned to the participating project partners. Considerations were agreed upon at the onset of the assessment effort. Macroinvertebrates observed were not scored through this SVAP process, since macroinvertebrate data would be collected as part of the NJDEP-approved sampling plan for this project. Also, the manure presence element was expanded to include signs of waterfowl, pet, and wildlife waste. This category is only scored when the presence of manure or animal waste is visible within the reach, which includes the floodplain for that particular reach. As per the SVAP protocol and the agreed upon revisions, the following rules apply:

- A score of "1" indicates that extensive amount of manure is on the banks or in the stream, or, untreated human waste discharge pipes are present.
- A score of "3" indicates occasional manure in the stream, or there is a waste storage structure located on the floodplain.
- A score of "5" indicates evidence of waterfowl, wildlife, or domestic pet access to riparian zone.

Only one reach was scored for manure presence out of the 38 reaches assessed; this location is shown in Figure and had a manure presence score of 3 indicating occasional manure in the stream, or there is a waste storage structure located on the floodplain.

Figure 4: Manure presence at 3rd Street in the Musquapsink Brook Watershed

SVAP Data

Thirty eight stream reaches were evaluated in the Musquapsink Brook Watershed; the stream reaches and the average SVAP scores are identified in Figure . The average overall SVAP score was 6.7, a "fair" score (Table 2). Canopy cover was the highest scoring element (average of 8.4), and instream fish cover was the lowest scoring element (average of 5.2). No assessed stream reach received a score of "excellent," five reaches were rated as "good" and eighteen were rated as "fair" (Table 2). The remaining fifteen reaches were rated as "poor." The reaches that were rated as poor were located along the entire length of the Musquapsink Brook (Figure 5). Tabulated SVAP data are provided in Appendix B.

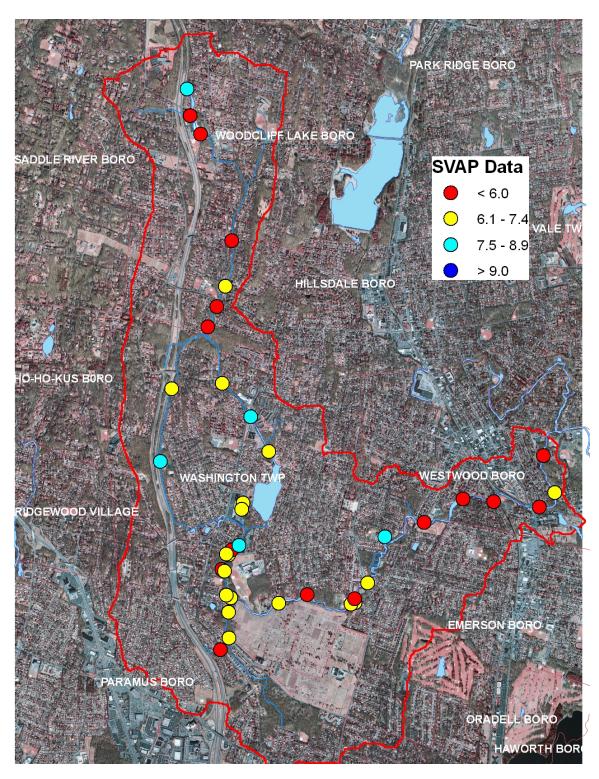


Figure 5: Stream visual assessment reaches with scores in the Musquapsink Brook Watershed

	Channel Condition	Hydrologic Alteration	Riparian Zone left bank	Riparian Zone right bank	Bank Stability left bank	Bank Stability right bank	Water Appearance	Nutrient Enrichment	Barriers to Fish Movement
# of scores	38	20	38	38	38	38	38	38	38
minimum value	1	1	1	1	1	1	3	3	0
maximum value	10	10	10	10	10	10	10	10	10
average	6.4	6.7	7.3	6.3	5.8	5.8	7.6	7.4	5.5
	Instream Fish Cover	Pools	Invertebrate Habitat	Canopy Cover	Manure Presence	Riffle Embeddedness	Nutrient H	Water Appearance & Nutrient Enrichment Averages	
# of scores	38	38	38	38	NA	20	3	38	36
minimum value	0	1	3	1	NA	0		3	1.5
maximum value	8	8	10	10	NA	10	1	0	10
average	5.2	6.3	7.9	8.4	NA	6.0	7	.5	6.7
	Overall Aver	age - left bank	Overall Averag	ge - right bank	Overall Site Average 35				
# of scores		35	3.	5			1		
minimum value	i	1.3	1.	3	1.3				
maximum value	9	0.7	9.	7	9.7				
average		5.7	6.	6	6.7				

Table 2: SVAP assessment elements and data

* "Tiered Assessment Averages" refers collectively to Hydrologic Alteration, Channel Condition, Riparian Zones left and right, Bank Stability left and right, Water Appearance, and Nutrient Enrichment.

Using the SVAP Data

SVAP scores will be evaluated as individual assessment elements and combined with other data collected as part of this restoration planning effort. The SVAP results will be compared to land use, soil characteristics, slope and stream gradient, and water quality monitoring results to determine the quality of waters within the Musquapsink Brook Watershed. The SVAP scores, information on pipes, ditches, photos, and remediation notes will be used to identify sources of pollution and potential opportunities for improved management.

Water Quality Sampling Overview

Project partners, including NJDEP, the RCE Water Resources Program, and the Bergen County Department of Health Services, began water quality monitoring on May 25, 2007. As per the approved Quality Assurance Project Plan (QAPP) provided in Appendix C, *in situ* measurements of pH, dissolved oxygen (DO), and temperature were collected. Stream velocity and depth were measured across the transect of the stream at each sampling station. Using this information, flow rate was calculated for each event where access to the stream was deemed safe. Water samples were collected and analyzed by two separate laboratories. The Bergen County Utility Authority conducted analyses for total phosphorus (TP), dissolved orthophosphate phosphorus (PO₄³⁻), ammonia-nitrogen (NH₃-N), total kjeldahl nitrogen (TKN), nitrate-nitrogen (NO₃-N), nitrite-nitrogen (NO₂-N), total suspended solids (TSS), and fecal coliform. Garden State Laboratories analyzed samples for *Escherichia coli* (*E. coli*).

Water quality monitoring included two different types of sampling events, regular and bacteria only. Regular monitoring, which included analysis for all parameters, occurred from May 25, 2007 through October 25, 2007. These events were monitored for total phosphorus, dissolved orthophosphate phosphorus, ammonia-nitrogen, TKN, nitrate-nitrogen, nitrite-nitrogen, total suspended solids, fecal coliform, and *E. coli* and had no specific weather conditions directing the sample collection. Bacteria-only monitoring was conducted in the summer months of June, July, and August 2007, again without conditions set by the weather. The bacteria-only sampling entailed collecting three additional samples in each of those months. Flow was measured, and *in situ* measurements were taken during these events. The dates and the types of monitoring events are summarized in Table 3.

Three storm events were supposed to be collected as part of this project. Due to the weather patterns and timing of storms during the six months of monitoring, only one storm event was encountered that would meet the requirements of the approved QAPP. Surface water samples collected during this storm were taken twice on October 10, 2007 and one the following morning on October 11, 2007. In addition to the one storm sampling event, several sampling events were representative of 'wet' conditions in the watershed.

To more accurately determine which monitoring events were collected under wet conditions when the stream velocities exceeded baseflow conditions, the HYSEP procedure was used. HYSEP is a data analysis program developed by the USGS to separate river flow into baseflow and storm-flow (Sloto and Crouse, 1996). Normally, this model would be applied to a daily discharge monitoring station within the watershed;

Date	Weather	Regular Monitoring for all Parameters	Bacteria Only Monitoring
5/24/2007	Dry	Х	
5/31/2007	Wet	Х	
6/7/2007	Dry	Х	
6/14/2007	Dry		Х
6/19/2007	Dry		Х
6/21/2007	Dry	Х	
6/28/2007	Wet		Х
7/5/2007	Wet	Х	
7/12/2007	Wet		Х
7/24/2007	Wet		Х
7/26/2007	Dry		Х
8/2/2007	Dry	Х	
8/9/2007	Wet		Х
8/16/2007	Wet	Х	
8/23/2007	Wet		Х
8/30/2007	Wet		Х
9/13/2007	Wet		Х
9/27/2007	Dry		Х
10/10/2007	Storm	Х	
10/11/2007	Storm	Х	
10/25/2007	Wet	Х	

 Table 3: Water quality monitoring events

however daily discharge is not recorded by the USGS in the Musquapsink Brook Watershed. Instead, USGS monitoring station 01377500, Pascack Brook at Westwood, which is just downstream of the confluence of the Musquapsink Brook and the Pascack Brook, was chosen. Although it would be preferable to use a flow gauge in the target watershed, the watershed does drain to the Pascack Brook, and the remainder of the drainage area is adjacent to the Musquapsink Brook watershed. The analysis was completed for the Pascack Brook over the length of the field sampling program. A 10% error bar was also applied to the baseflow since these data are collected in a watershed other than the Musquapsink Brook. When flow was more than 10% greater than baseflow and rain occurred on the day of or the day preceding sampling, the event was considered as storm-related flow and assigned the term "wet" in Table 3.

Surface water samples from eight water quality monitoring stations were regularly collected over the six-month sampling time frame. These stations are depicted in Figure 6. Six stations were located on the Musquapsink Brook, and two were located adjacent to the UWNJ transfer intake located at the confluence of the Saddle River and the Ho Ho Kus Brook. The stations are identified in Table 4.

A record of the water transfers to the Musquapsink Brook was obtained from UWNJ. It shows that transfers were made on 188 days out of the 214 day interval between June 1, 2007 and December 31, 2007. The total volume of water transferred was 551 million gallons. Figure 7 shows the water transfer record.

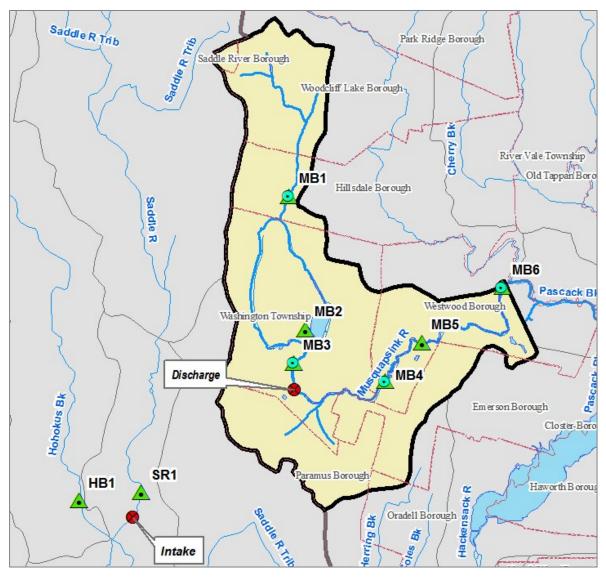


Figure 6: Water quality sampling location map

Site ID	Site Description
MB1	Musquapsink Brook at Hillside Ave, Hillsdale
MB2	Musquapsink Brook at Woodfield Ave, Washington
MB3	Musquapsink Brook at Ridgewood Ave, Washington
MB4	Musquapsink Brook at Forest Ave, Westwood
MB5	Musquapsink Brook at Third Ave, Westwood
MB6	Musquapsink Brook at Harrington Ave, Westwood
SR1	Saddle River at Grove St, border of Paramus and Ridgewood
HB1	Ho Ho Kus Brook at Grove St, border of Paramus and Ridgewood



Figure 7: UWNJ transfer record

Data Results and Comparison to Water Quality Criteria

To evaluate the health of the Musquapsink Brook at all the stations, the monitoring results were compared to the designated water quality criteria. Water quality criteria are developed according to the designated uses of the waterbody. The Musquapsink Brook is classified as FW2-NT, or freshwater (FW) non trout (NT). "FW2" refers to waterbodies that are used for primary and secondary contact recreation; industrial and agricultural water supply; maintenance, migration, and propagation of natural and established biota; public potable water supply after conventional filtration treatment and disinfection; and any other reasonable uses. "NT" means those freshwaters that have not been designated as trout production or trout maintenance. NT waters are not suitable for trout due to physical, chemical, or biological characteristics, but NT

waters can support other fish species (NJDEP, 2006a). Furthermore, the Musquapsink Brook is a Category One antidegradation waterbody due to its discharge to the Oradell Reservoir, which is a potable water supply.

The USEPA Guidance for the Preparation of the Comprehensive State Water Quality Assessments (USEPA, 1997) advises that an acceptable frequency for water quality results to exceed criteria is 10% of samples. NJDEP has further stated that a minimum of eight samples collected quarterly over a two-year period are required to confirm quality of waters. Therefore, if a waterbody has a minimum of eight samples collected quarterly over a two-year period with more than 10% of the samples exceeding the water quality criteria for a certain parameter, the waterbody is considered "impaired" for that parameter. By applying this rule to the water quality data, it is possible to identify which stations are impaired for each parameter that has been identified as a concern to the project – total phosphorus, fecal coliform, and E. coli. The applicable water quality criteria for this project are detailed in Table 5, and the percent of samples that exceeded these standards are given in Table 6. At the time of this project's initiation, fecal coliform was the accepted measure indicating pathogen pollution for New Jersey freshwaters. Since then, the fecal coliform criterion has been replaced by an E. coli criterion. Since the TMDL refers to fecal coliform, both fecal and E. coli were measured.

Tabulated water quality monitoring results are provided in Appendix D. Water quality monitoring data have also been graphed with surface water quality criterion; these graphs are available in Appendix E.

Substance	Surface Water Classification	Criteria
TP (mg/L)	FW2 Streams	Except as necessary to satisfy the more stringent criteria in accordance with "Lakes" (above) or where watershed or site-specific criteria are developed pursuant to N.J.A.C. 7:9B-1.5(g)3, phosphorus as total P shall not exceed 0.1 in any stream, unless it can be demonstrated that total P is not a limiting nutrient and will not otherwise render the waters unsuitable for the designated uses.
	FW2 Lakes	Phosphorus as total P shall not exceed 0.05 in any lake, pond, or reservoir, or in a tributary at the point where it enters such bodies of water, except where watershed or site-specific criteria are developed pursuant to N.J.A.C. 7:9B-1.5(g)3.
Fecal Coliform (Col/100 mL)	FW2	Shall not exceed geometric average of 200/100 mL, nor should more than 10% of the total samples taken during any 30-day period exceed 400/100 mL.
E. coli (Col/100 mL)	FW2	Shall not exceed a geometric mean of 126/100 mL or a single sample maximum of 235/100 mL.

Table 5: Water quality criteria according to N.J.A.C. 7:9B (NJDEP, 2006a)

Monitoring	TP (mg/L)							
Station ID	criterion	count	minimum	maximum	average	% not satisfying criterion		
MB1	0.1	6	0.05	0.14	0.08	44		
MB2	0.1	7	0.05	0.11	0.07	10		
MB3	0.1	7	0.03	0.09	0.06	0		
MB4	0.1	7	0.03	0.35	0.11	50		
MB5	0.1	6	0.06	0.35	0.17	60		
MB6	0.1	7	0.04	0.19	0.10	50		
SR1	0.1	7	0.01	0.11	0.05	30		
HB1	0.1	7	0.91	2.20	1.77	90		
			Fecal Col	liform (col/1	00mL)			
MB1	200	23	200	28,000	3,479	96		
MB2	200	23	60	12,000	1,481	87		
MB3	200	23	120	44,000	3,706	91		
MB4	200	23	410	49,000	5,530	100		
MB5	200	23	106	58,000	6,627	100		
MB6	200	22	500	70,000	8,117	100		
SR1	200	23	110	39,000	5,550	87		
HB1	200	23	200	41,000	7,270	91		
			Е. со	<i>li</i> (col/100m]	L)			
MB1	235	23	170	16,000	2,639	91		
MB2	235	23	60	2,200	480	65		
MB3	235	23	160	7,800	1,897	96		
MB4	235	23	160	25,000	4,809	96		
MB5	235	23	120	33,000	6,090	96		
MB6	235	23	210	38,000	5,202	96		
SR1	235	22	380	23,000	2,860	100		
HB1	235	22	410	22,000	3,150	100		

Table 6: Summary of water quality data collected and comparison to water quality criteria

MST Data in the Musquapsink Brook Watershed

Microbial source tracking (MST) techniques have recently been developed that have the ability to identify the origin of fecal pollution. MST is the concept of applying microbiological, genotypic (molecular), phenotypic (biochemical), and chemical methods to identify the origin of fecal pollution (USEPA, 2005). MST techniques typically report fecal contamination source as a percentage of targeted bacteria. One of the most promising targets for MST is group *Bacteroides*, a genus of obligately anaerobic, gramnegative bacteria that are found in all mammals and birds. *Bacteroides* comprise up to 40% of the amount of bacteria in feces and 10% of the fecal mass. Due to the large quantity of *Bacteroides* in feces, they are an ideal target organism for identifying fecal contamination (Layton *et al.*, 2006). In addition, *Bacteroides* have been recognized as having broad geographic stability and distribution in target host animals and are a promising microbial species for differentiating fecal sources (USEPA, 2005; Dick *et al.*, 2005; Layton *et al.*, 2006).

Three sets of PCR primers (targets) were used to quantify *Bacteroides* from 1) all sources of *Bacteroides* ("AllBac"), 2) human sources ("HuBac"), and 3) bovine sources of *Bacteroides* ("BoBac"). This assay is based on published results from a study sponsored by the Tennessee Department of Environmental Conservation (Layton *et al.*, 2006).

Methods

Samples were collected in sterile bottles at all six monitoring sites and held at 4°C until processing. On one sampling occasion, additional samples were collected at stations HR1 and SR1. A 100 mL aliquot of each sample was filtered aseptically onto a membrane filter and DNA was extracted from total filtered biomass using a DNeasy® tissue kit (Qiagen). The protocol used is a modification of the procedure found in the DNeasy Tissue Handbook (Qiagen, 2004).

After extraction, all DNA samples were quantified by spectroscopy (Beckman DU 640) at 260 and 280 nm then diluted in sterile water to a concentration of $1 \mu g/mL$.

This diluted DNA was used as the template for quantitative, real-time PCR reactions to measure the number of *Bacteroides* present.

The number of *Bacteroides* was measured using a TaqMan® based assay using Applied Biosystems reagents and standard conditions on an Applied Biosystems 7300 Real-Time PCR system. Three target sequences were measured. These targets indicate the total number of *Bacteroides* (AllBac) as well as the number of specifically humansourced (HuBac) and bovine-sourced (BoBac) *Bacteroides*. The copy number of each target was calculated by comparison to a standard curve made with plasmids containing human- or bovine-sourced target 16S RNA genes amplified with the primers Bac 32f and Bac 708r (Bernhard and Field, 2000). Dilutions of plasmid DNA provided standard curves which were linear from 10 to 100,000 copies per μ L. Figure presents individual standard curves plotting log copy number vs. threshold cycle (Ct) for AllBac (a), Hubac (b), and BoBac (c) primer sets. All primers and probes were taken from Layton *et al.* (2006) or Bernhard and Field (2000) (Table 7).

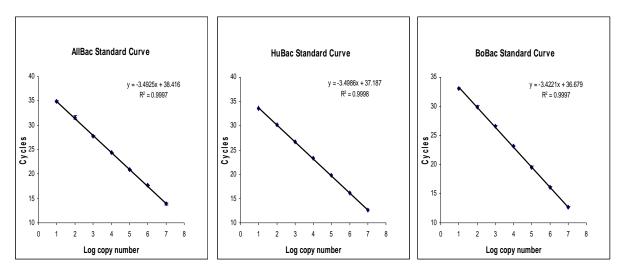


Figure 8: Standard curves for quantification of Bacteroides

PCR Primers					
HuBac 566f	5' GGG TTT AAA GGG AGC GTA GG 3'				
HuBac 692r	5' CTA CAC CAC GAA TTC CGC CT 3'				
BoBac 367f	5' GAA GRC TGA ACC AGC CAA GTA 3'				
BoBac 467r	5' GCT TAT TCA TAC GGT ACA TAC AAG 3'				
AllBac 296f	5' GAG AGG AAG GTC CCC CAC 3'				
AllBac 412r	5' CGC TAC TTG GCT GGT TCA G 3'				
Bac 32f	5' AAC GCT AGC TAC AGG CTT 3'				
Bac 708r	5' CAA TCG GAG TTC TTC GTG 3'				
	TaqMan Probes				
BoBac402Tman	5' 6FAM TGA AGG ATG AAG GTT CTA TGG ATT GTA AAC TT TAMRA 3'				
HuBac594Tman	5' 6FAM TAA GTC AGT TGT GAA AGT TTG CGG CTC TAMRA 3'				
AllBac375Tman	5' VIC CCA TTG ACC AAT ATT CCT CAC TGC TGC CT TAMRA 3'				

 Table 7: Primers and probes used for the MST effort

Results of qPCR and Source Detection

The Musquapsink Brook Watershed is an urban watershed with no cattle within its boundaries, and the MST confirmed this with no detections of bovine-related *Bacteroides* in any sample. Human-related *Bacteroides* were detected in MB2, MB4, MB5, MB6, and HB1 on at least one sampling occasion (Figure 9). Pollution sources could be determined by the frequency of detection of specific markers at particular sampling locations (

Table 8). These data show that certain stations (MB2, MB4, MB5, MB6, and HB1) have a higher incidence of contamination with human feces.

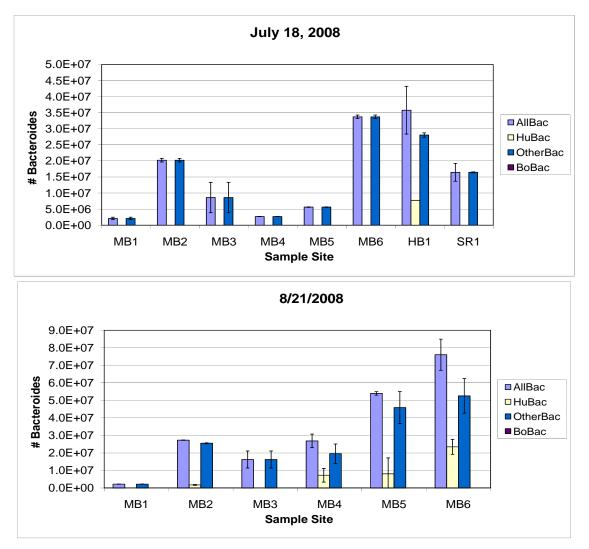


Figure 9: Sample data showing the numbers of *Bacteroides* detected by the three primer sets on two days of sampling

	% of Samples Containing Target Sequence								
	MB1	MB2	MB3	MB4	MB5	MB6	HB1	SR1	
AllBac	100	100	100	100	100	100	100	100	
HuBac	0	50	0	50	50	50	50	0	

Table 8: Frequency of detection of AllBac, HuBac (human), or BoBac (bovine) target sequences

Data Summary

The data show a variety of water quality concerns in the Musquapsink Brook Watershed. The AMNET macroinvertebrate results show moderate impairments to the biological communities within the watershed (Table 1). The biological community may be impacted by environmental stressors or degraded habitat. Habitat quality may be low due to physical alterations as observed during SVAP assessments conducted throughout the watershed. Overall quality of the streams was assessed as "fair" but individual element scores ranged from "poor" to "good" (Table 2). Further analysis of this data may help to explain what physical factors (i.e., erosion, habitat structure, and water availability) may be responsible for the composition of the macroinvertebrate communities seen in the watershed.

While the biological monitoring and SVAP assessments shed light on watershed quality, surface water monitoring provides possible reasons for this quality. Results indicate that total phosphorus and fecal coliform concentrations, and pH levels are in violation of water quality criteria established by the NJDEP (Table 6). All eight (8) monitoring locations were in violation of both pH and total phosphorus water quality criteria in greater than 10% of the samples (Table 6). All eight (8) stations were also in violation of the fecal coliform water quality criterion (Table 6). Tracking of bacterial sources within the watershed indicate a higher human contribution to bacteria at stations MB2, MB4, MB5, MB6, and HB1 (Table 8).

Water quality data will be combined with land use data analyses to determine sources of pollutants. A full analysis of data will be conducted and presented in the Musquapsink Brook Watershed Restoration and Protection Plan.

References

- Bernhard, A.E., and K.G. Field, 2000, A PCR Assay to Discriminate Human and Ruminant Feces on the Basis of Host Differences in *Bacteroides Prevotella* Genes Encoding 16S rRNA. Appl. Environ. Microbiol. 66:4571-4574.
- Dick, L.K., A.E. Bernhard, T.J. Brodeur, J.W. Santo-Domingo, J.M. Simpson, S.P. Walters and K.G. Field, 2005, Host Distributions of Uncultivated Fecal Bacteroidales Bacteria Reveal Genetic Markers for Fecal Source Identification. Appl. Environ. Microbiol. 71(6):3184-3191.
- Layton, A., L. McKay, D. Williams, V. Garrett, R. Gentry and G. Sayler, 2006, Development of *Bacteroides* 16S rRNA Gene TaqMan-Based Real-Time PCR Assays for estimation of Total, Human, and Bovine Fecal Pollution in Water. Appl. Environ. Microbiol. 72(6):4214-4224.
- New Jersey Department of Environmental Protection (NJDEP), 1994, Ambient Biomonitoring Network Arthur Kill, Passaic, Hackensack, and Wallkill River Drainage Basins: 1993 Benthic Macroinvertebrate Data. Trenton, NJ.
- New Jersey Department of Environmental Protection (NJDEP), 2000, Ambient Biomonitoring Network Watershed Management Areas 3, 4, 5, and 6, Passaic Region: 1998 Benthic Macroinvertebrate Data. Trenton, NJ.
- New Jersey Department of Environmental Protection (NJDEP), 2003, Total Maximum Daily Loads for Fecal Coliform to Address 32 Streams in the Northeast Water Region. Trenton, NJ.
- New Jersey Department of Environmental Protection (NJDEP), 2006. Integrated Water Quality Monitoring and Assessment Report. Trenton, NJ.
- New Jersey Department of Environmental Protection (NJDEP), 2006a. Surface Water Quality Standards, N.J.A.C. 7:9B. Trenton, NJ.
- New Jersey Department of Environmental Protection (NJDEP), 2007. NJDEP 2002 Land Use/Land Cover Update, WMA-3. Trenton, NJ.

- New Jersey Department of Environmental Protection (NJDEP), 2007a, Standard Operating Procedures, Ambient Biological Monitoring Using Benthic Macroinvertebrates, Field, Lab, and Assessment Methods. Bureau of Freshwater and Biological Monitoring Document No. BMNJ2. http://www.nj.gov/dep/wms//bfbm/download/AMNET SOP.pdf.
- New Jersey Department of Environmental Protection (NJDEP), 2008, Ambient Biomonitoring Network Northeast Water Region, Passaic River Drainages, Watershed Management Areas 3, 4, 5, and 6, Round 3 Benthic Macroinvertebrate Data (Volume 1 of 2). Trenton, NJ.
- Qiagen, Inc., 2004, DNeasy[®] Tissue Handbook. Valencia, CA.
- Sloto, R. A. and M. Y. Crouse, 1996, HYSEP: A Computer Program for Streamflow Hydrograph Separation and Analysis. USGS Water-Resources Investigations Report 96-4040, Lemoyne, PA.
- United States Department of Agriculture (USDA), Natural Resource Conservation Service (NRCS), 1998, Stream Visual Assessment Protocol. National Weather and Climate Center Technical Note 99-1.
- United States Environmental Protection Agency (USEPA), 1997, Guidance for the Preparation of the Comprehensive State Water Quality Assessments (305(b) Reports) and Electronic Updates. EPA 841-B-97-0027). Washington, D.C.
- United States Environmental Protection Agency (USEPA), 2005. Microbial Source Tracking Guidance Document. EPA/600/R-05/064. Office of Research and Development National Risk Management Research Library. Washington, DC. 151 pp.

Musquapsink Brook Benthic Data Report

Prepared by:

Marion McClary, Jr., Ph.D. Associate Professor of Biological Sciences Associate Director of Biological Sciences Fairleigh Dickinson University

for

Rutgers Cooperative Extension Water Resources Program as part of RP07-002 Musquapsink Brook Watershed Restoration and Protection Plan

June 2008

Biological Monitoring Materials and Methods

Upon arrival at the sampling location, the end of a tape measure was placed and held below any road or bridge crossing that was present and stretched 100 meters upstream to minimize the effect of the road or bridge on stream velocity, depth, and overall habitat quality as per the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. At this location. 100 meters upstream of the road or bridge crossing, the tape measure was again placed and held and stretched 100 meters upstream to include a 100 meter reach that was representative of the characteristics of the stream (the study area). Other road or bridge crossings were avoided. If this was not possible, the tape measure was placed and held below this road or bridge crossing and the aforementioned procedure was repeated until road and bridge crossing could be avoided. There were no major tributaries discharging to the stream in the study area as suggested by the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. The tape measure was left in the study area for sampling.

Before sampling the physical/chemical field sheet (Chapter 5; Appendix A-1, Form 1 of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition) was completed to document the site description, weather conditions, and land use. After sampling this information was reviewed for accuracy and completeness.

The straight-away portions of the sampling reach were photographed with a digital camera starting downstream and ending upstream (with the exception of MB6 which was done in the reverse direction) to include in-stream attributes (e.g. riffles, falls, fallen trees, pools, bends, etc.) and important structures, plants, and attributes of the bank and near stream areas. If the sampling reach had curves, the "straight-away portions of each curve" were photographed. This means more photographs were taken of sampling reaches that had more curves because each "straight-away segment of the curve" received a photograph, and fewer photographs were taken of sampling reaches that had less curves.

Two sampling procedures were used. One procedure was used depending upon if the habitat was a single habitat or a multihabitat. Habitats that had a very slow current or were greater than 1 ft deep, and lacked riffles were considered to be multihabitats and a multihabitat approach was used for them. Habitats that were 1 ft deep or less and had riffles and runs were considered single habitats. The second procedure was used for all habitats whether they were single or multihabitats. For single habitats with riffles and runs, all riffle and run areas within the 100-m reach were candidates for sampling macroinvertebrates. A composite sample was taken from individual sampling spots in the riffle and runs representing different velocities.

Field Sampling Procedures for Single Habitat

Sampling began at the downstream end of the reach and proceeded upstream. Sampling was done in triplicate. The first replicate (A) was done along the bank on the right. The second replicate (B) was done along the bank on the left. The third replicate

(C) was done in the middle of the channel. For sampling, a surber sampler (0.3 m x 0.3 m with a mesh size of 500 μ) was placed horizontally on cobble substrate and 2 or 3 kicks (use of the toe or heel of the boot to dislodge the upper layer of cobble or gravel and to scrape the underlying bed) were done at various velocities in the riffle or series or riffles. Larger substrate particles were picked up and rubbed by hand to remove attached organisms. The net on the vertical section of the frame captured the dislodged organisms from the sampling area.

The kicks collected from three different locations in the cobble substrate were composited to obtain a single homogenous sample for each replicate. After each kick, the collected material was washed by running clean stream water through the net 2 to 3 times until the water was clear. Large debris was removed after rinsing and inspecting for organisms. Any organisms found were placed into a sample container.

The sample in the net was transferred to a sample container and enough 95 percent ethanol was added to cover the sample. Forceps were used to remove organisms from the net. A label indicating the date, stream name and sampling location was placed on the sample container. This information was recorded in the "Sample log" (Appendix A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition.

The top portion of the "Benthic Macroinvertebrate Field Data Sheet" (Appendix A-3, Form 1) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was completed.

The percentage of each habitat type in the reach was recorded, and the sampling gear used and the conditions of the sampling, e.g. high flows, treacherous rocks, difficult access to the stream, or anything that would indicate adverse sampling conditions were noted.

Observations of aquatic flora and fauna were documented and qualitative estimates of macroinvertebrate composition and relative abundance as a cursory estimate of ecosystem health and to check adequacy of sampling were made.

Habitat assessment (Appendix A-1, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was performed after sampling was completed by walking the reach.

The samples were returned to the laboratory and the log-in form (Appendix A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was completed.

After sampling was completed at the site, all nets, pans, and etc. that came in contact with a sample was rinsed thoroughly, examined carefully, and picked free of organisms or debris. Any additional organisms found were placed in the sample containers. The equipment was examined again prior to use at the next sampling site.

Field Sampling Procedures for Multihabitat

Different types of habitat were sampled in approximate proportion to their representation of surface area of the total macroinvertebrate habitat in the reach. For example, if snags comprised 50% of the habitat in a reach and riffles comprised 20%,

then 10 kicks were done in snag material and 4 kicks were done in riffle areas. The remainder of the kicks (6) would be done in any remaining habitat type. Habitat types contributing less than 5% of the stable habitat in the stream were not sampled. In this case, the remaining kicks were allocated proportionately among the predominate substrates. The number of kicks done in each habitat was recorded on the field data sheet.

Sampling began at the downstream end of the reach and proceeded upstream. Sampling was done in triplicate. The first replicate (A) was done along the bank on the right. The second replicate (B) was done along the bank on the left. The third replicate (C) was done in the middle of the channel. A total of 20 kicks were done over the length of the reach. A kick was a stationary sampling accomplished by positioning a D-frame dip net (0.3 m width and 0.3 m height and shaped as a "D" with a mesh size of 500 μ) and disturbing the substrate for a distance of 0.5 m upstream of the net.

Kicks collected from the multiple habitats were composited to obtain a single homogenous sample for each replicate. After every 3 kicks or more if necessary, the collected material was washed by running clean stream water through the net two to three times. Large debris was removed after rinsing and inspecting for organisms. Any organisms found were placed into a sample container.

The sample in the net was transferred to a sample container and enough 95 percent ethanol was added to cover the sample. Forceps were used to remove organisms from the net. A label indicating the date, stream name and sampling location was placed on the sample container. This information was recorded in the "Sample log" (Appendix

A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition.

The top portion of the "Benthic Macroinvertebrate Field Data Sheet" (Appendix A-3, Form 1) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was completed.

The percentage of each habitat type in the reach was recorded, and the sampling gear used and the conditions of the sampling, e.g. high flows, treacherous rocks, difficult access to the stream, or anything that would indicate adverse sampling conditions were noted.

Observations of aquatic flora and fauna were documented and qualitative estimates of macroinvertebrate composition and relative abundance as a cursory estimate of ecosystem health and to check adequacy of sampling were made.

Habitat assessment (Appendix A-1, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was performed after sampling was completed by walking the reach.

The samples were returned to the laboratory and the log-in form (Appendix A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was completed.

After sampling was completed at the site, all nets, pans, and etc. that came in contact with a sample was rinsed thoroughly, examined carefully, and picked free of

organisms or debris. Any additional organisms found were placed in the sample containers. The equipment was examined again prior to use at the next sampling site.

Coarse Particulate Organic Matter (CPOM) Sampling Procedures

Sampling began at the downstream end of the reach and proceeded upstream. Sampling was done in triplicate. The first replicate (D) was done along the bank on the right. The second replicate (E) was done along the bank on the left. The third replicate (F) was done in the middle of the channel. Three grab type samples were collected for each replicate. These samples were sorted in the field, composited (i.e., the contents from the three grab samples from each site was combined into a single container) for each replicate, and preserved in 80% ethanol for later subsampling, identification and enumeration.

A composite collection of a variety of CPOM forms (e.g., leaves, needles, twigs, bark, or fragments of these) was collected for each replicate. The material was sampled in depositional areas, such as pools and along snags and undercut banks. The CPOM sample was processed using a U.S. Standard No. 30 sieve, and added to the composite of the replicate grab samples for each site.

A label indicating the date, stream name and sampling location was placed on the sample container. This information was recorded in the "Sample log" (Appendix A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition.

The top portion of the "Benthic Macroinvertebrate Field Data Sheet" (Appendix A-3, Form 1) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable

Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was completed.

The percentage of each habitat type in the reach was recorded, and the sampling gear used and the conditions of the sampling, e.g. high flows, treacherous rocks, difficult access to the stream, or anything that would indicate adverse sampling conditions were noted.

The samples were returned to the laboratory and the log-in form (Appendix A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition was completed.

After sampling was completed at the site, the sieve was rinsed thoroughly, examined carefully, and picked free of organisms or debris. Any additional organisms found were placed in the sample containers. The sieve was examined again prior to use at the next sampling site.

Laboratory Processing For Macroinvertebrate Samples

All samples were dated and recorded in the "Sample Log" notebook or on sample log form (Appendix A-3, Form 2) of the Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition in the laboratory. All information from the sample container label was included on the sample log sheet. All samples were sorted in a single laboratory to enhance quality control.

The identity and number of organisms were recorded on the Laboratory Bench Sheet (Appendix A-3, Form 3) of the Rapid Bioassessment Protocols for Use in Streams

and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. The life stage of the organisms, the taxonomist's initials and the Taxonomic Certainty Rating (TCR) was recorded as a measure of confidence.

The back of the bench sheet was used to explain certain TCR ratings or condition of organisms. Other comments were included to provide additional insights for data interpretation.

A 100-organism subsample of the benthic macroinvertebrate composite sample from each sampling site was to be taken into the laboratory according to the methods outlined in the Rapid Bioassessment Protocol used by the NJDEP Bureau of Freshwater and Biological Monitoring. With the exception of chironomids and oligochaetes, benthic macroinvertebrates were to be identified to genus. Chironomids were to be identified to subfamily as a minimum, and oligochaetes were to be identified to family as a minimum.

Each individual organism was to be assigned a number and 100 numbers were to be randomly selected out of a hat. The organisms assigned to these numbers were to be the randomly selected sub-sample. Taxa richness (total families) was to be determined by totaling each different family represented in the sub-sample. The EPT (*Ephemeroptera*, *Plecoptera*, and *Trichoptera* orders; mayflies, stoneflies, and caddisflies) Index was to be determined by adding each individual EPT family in the subsample. Percent dominance was to be determined by the family that has the greatest number of individuals in the sub-sample. Percent EPT was to be determined by adding the total number of individuals found in all EPT families in the sub-sample. A Modified Family Biotic Index (FBI) was to be determined by FBI = $\Sigma x_i t_i / n$ where x_i = number of individuals within a family, t_i = tolerance value of a family (in appendix B, Tables C-1

and C-2 of the NJDEP guide), and n = total number of organisms within the sub-sample (100). Taxa richness, EPT Index, percent dominance, percent EPT, and FBI were to be assigned a biometric score of 0, 3, or 6 (in Table 1 of the NJDEP guide) and totaled. A score of 24-30 means the Musquapsink Brook is not impaired, 9-21 means it is moderately impaired, and 0-6 means it is severely impaired. A good or bad land assessment moves a score between a range up or down.

The measurement of physicochemical parameters was also conducted concurrent with the benthic macroinvertebrate sampling. These parameters, pH, temperature, dissolved oxygen, and total dissolved solids (TDS) were conducted by Rutgers University.

For archiving samples, specimen vials, (grouped by station and date), were placed in jars with a small amount of denatured 70% ethanol and tightly capped. The ethanol levels in these jars was examined periodically and replenished as needed. A stick-on label was placed on the outside of the jar indicating sample identifier and date.

Biological Monitoring Results and Discussion

Physical characterization/water quality

The stations sampled in the Musquapsink Brook became deeper moving from an upstream to a downstream location. Station MB1, the most upstream sampling site, is composed of mainly bedrock and had the least amount of water of the other stations (Table 1). Station MB3, further downstream, has more water than MB1 and was composed of sediment and rocks (Table 2). Station MB6, even further downstream, has more water than MB3 and it too has sediment and rocks unlike station MB1 which lacks

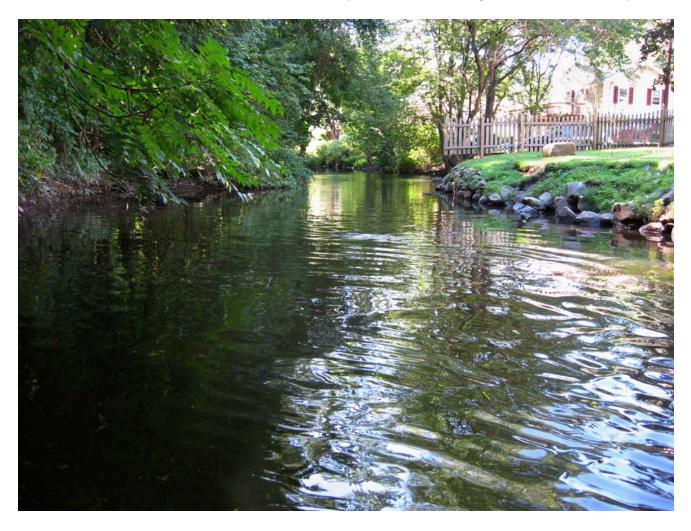
sediment (Table 3). Station MB4, the most downstream sampling site, had the most water and was also the slowest moving of the other sites. It was the only site that lacked riffles (Table 4). Tables 1-4 also include information about the stream such as weather conditions during sampling, watershed features, riparian vegetation, instream features, large woody debris, aquatic vegetation, water quality, and sediment and substrate characteristics. The photographs of each station are immediately after the table. The table indicates the number of pages that contain the photographs.

Table 1. Physical characterization/water quality field data sheet for MB1.

Stream Name: Musquapsink Brook							
Station #: MB1							
Investigator: Dr. Marion McClary and students							
Form completed by: Dr. Marion	Date: 8/30/07						
McClary and students	Time: 8:28 am						
Weather conditions:	Clear/sunny, no heavy rain in the last 7 days						
Site location/photographs	See the next 3 pages						
Watershed features	Predominant surrounding land use: forest and residential, no evidence of local watershed NPS pollution, moderate evidence of local watershed erosion						
Riparian vegetation (18 meter buffer)	Trees are the dominant type						
Instream features	Estimated reach length: 100 m, width: 2 m, stream depth: < 0.3 m, canopy cover: partly shaded, 40 riffle, 20% pool, 40% run, channelized, no dam present						
Large woody debris	LWD: 0 m ²						
Aquatic vegetation	0% of the reach with aquatic vegetation						
Water quality	No water odors, no surface oils, clear						
Sediment/substrate	No odors, no oils, no deposits						
Inorganic substrate components %	Organic substrate components % composition in						
composition in reach (should add up	sampling area (does not necessarily add up to						
to 100%)	100%)						
Bedrock: 70%	Detritus: 5%						
Boulder: 5%							
Cobble: 20%	Muck-Mud: 0%						
Gravel: 5%							
Sand: 0%	Marl: 0%						
Silt: 0%							
Clay: 0%							

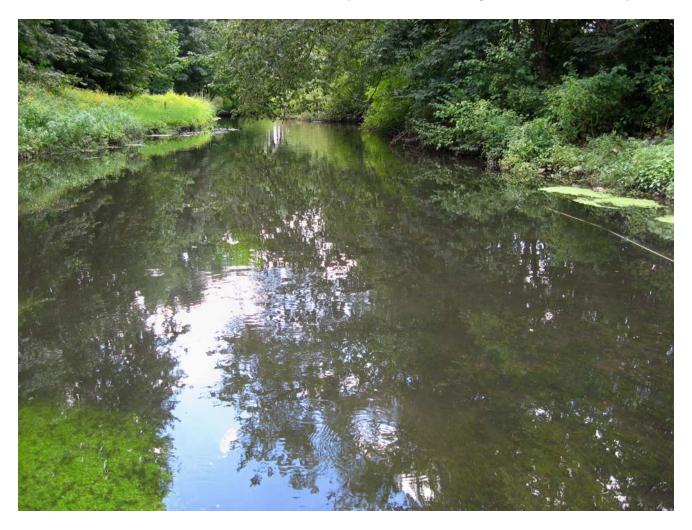
Stream Name: Musquapsink Brook	
Station #: MB3	
Investigator: Dr. Marion McClary and students	
Form completed by: Dr. Marion	Date: 8/30/07
McClary and students	Time: 11:07 am
Weather conditions:	70% cloud cover, clear/sunny, heavy rain in the
	last 7 days, air temperature: 22 ° C
Site location/photographs	See the next 4 pages
Watershed features	Predominant surrounding land use: residential, no evidence of local watershed NPS pollution,
D:	moderate evidence of local watershed erosion
Riparian vegetation (18 meter buffer)	Trees and shrubs are the dominant type
Instream features	Estimated reach length: 100 m, width: 5 m, stream depth: < 0.3 m, canopy cover: partly shaded, 30% riffle, 30% pool, 30% run, channelized, no dam present
Large woody debris	LWD: 1 m ²
Aquatic vegetation	0% of the reach with aquatic vegetation
Water quality	No water odors, surface oils, slightly turbid
Sediment/substrate	No odors, no oils, trash
Inorganic substrate components %	Organic substrate components % composition in
composition in reach (should add up	sampling area (does not necessarily add up to
to 100%)	100%)
Bedrock: 0%	Detritus: 60%
Boulder: 0%	
Cobble: 20%	Muck-Mud: 0%
Gravel: 20%	
Sand: 20%	Marl: 0%
Silt: 20%	
Clay: 20%	

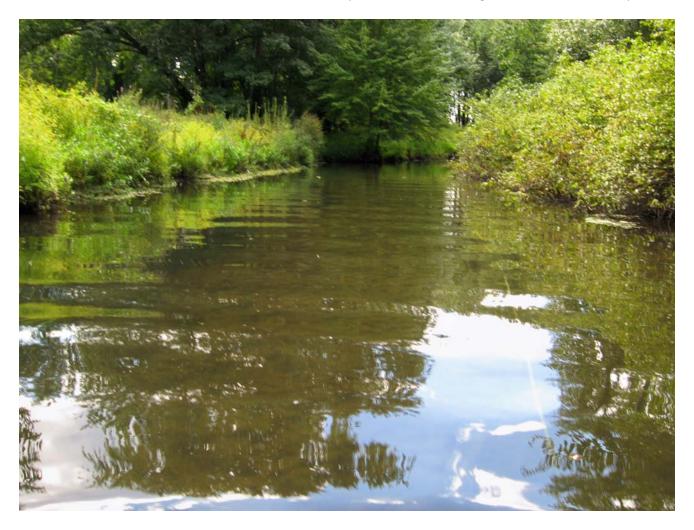
 Table 2. Physical characterization/water quality field data sheet for MB3.



Stream Name: Musquapsink Brook	
Station #: MB6	
Investigator: Dr. Marion McClary	
and students	
Form completed by: Dr. Marion	Date: 9/13/07
McClary and students	Time: 9:30 am
Weather conditions:	Clear/sunny, heavy rain in the last 7 days, air
	temperature: 75 ° F
Site location/photographs	See the next 3 pages
Watershed features	Predominant surrounding land use: residential, no
	evidence of local watershed NPS pollution, no
	evidence of local watershed erosion
Riparian vegetation (18 meter	Trees and shrubs are the dominant type
buffer)	
Instream features	Estimated reach length: 100 m, width: 7 m, stream
	depth: 0.3 m, canopy cover: partly shaded, 20%
	riffle, 40% pool, 20% run, not channelized, no
	dam present
Large woody debris	LWD: 1 m ²
Aquatic vegetation	0% of the reach with aquatic vegetation
Water quality	No water odors, no surface oils, slightly turbid to
	turbid
Sediment/substrate	No odors, no oils, trash
Inorganic substrate components %	Organic substrate components % composition in
composition in reach (should add up	sampling area (does not necessarily add up to
to 100%)	100%)
Bedrock: 0%	Detritus: 20%
Boulder: 5%	
Cobble: 15%	Muck-Mud: 0%
Gravel: 20%	
Sand: 20%	Marl: 10%
Silt: 20%	
Clay: 20%	

Table 3. Physical characterization/water quality field data sheet for MB6.





Stream Name: Musquapsink Brook	
Station #: MB4	
Investigator: Dr. Marion McClary and students	
Form completed by: Dr. Marion	Date: 9/13/07
McClary and students	Time: 11:30 am
Weather conditions:	Clear/sunny, heavy rain in the last 7 days, air temperature: 78 ° F
Site location/photographs	See the next 4 pages
Watershed features	Predominant surrounding land use: park, no evidence of local watershed NPS pollution, no evidence of local watershed erosion
Riparian vegetation (18 meter buffer)	Shrubs are the dominant type
Instream features	Estimated reach length: 100 m, width: 8 m, stream depth: > 1 m, canopy cover: partly shaded, 100% run, channelized, no dam present
Large woody debris	LWD: 1 m ²
Aquatic vegetation	Rooted emergent (70%), rooted submergent (30%) are dominant, 100% of the reach with aquatic vegetation
Water quality	No water odors, no surface oils, turbid
Sediment/substrate	No odors, no oils, no deposits
Inorganic substrate components % composition in reach (should add up to 100%)	Organic substrate components % composition in sampling area (does not necessarily add up to 100%)
Bedrock: 0%	Detritus: 10%
Boulder: 0%	
Cobble: 0%	Muck-Mud: 90%
Gravel: 0%	
Sand: 0%	Marl: 0%
Silt: 50%	
Clay: 50%	

Table 4. Physical characterization/water quality field data sheet for MB4.

Benthic Macroinvertebrates

Because station MB1 was shallow and had riffles (see Table 1), a surber was used to collect macroinvertebrates. An average of 0 (absent/not observed) were collected from MB1 using this technique and grab samples (Table 5).

Because MB3 was shallow and had riffles (see Table 2), a surber was used to collect macroinvertebrates. An average of 1 (rare) was collected from MB3 using this technique and grab samples (Table 6). Of the macroinvertebrates collected, the most abundant was an average of 1 (rare) which was found for Coleoptera and Trichoptera (Table 6).

Because MB6 was shallow and had riffles (see Table 3), a surber was used to collect macroinvertebrates. An average of 2 (common) was collected from MB6 using this technique and grab samples (Table 7). Of the macroinvertebrates collected, the most abundant was an average of 1 (rare) which was found for Amphipoda, Coleoptera and Chironomidae (Table 7).

Because station MB4 was deep and lacked riffles (see Table 4), a D frame dip was used to collect macroinvertebrates. An average of 1 (rare) was collected from MB4 using this technique and grab samples (Table 8). Of the macroinvertebrates collected, the most abundant was an average of 1 (rare) which was found for Anisoptera and Zygoptera (Table 8).

Table 5. Dentine macromvertebrate netu data site		71 1V .	D1.	•			1	
Stream Name: Musquapsink Brook								
Station #: MB1		P	C		P	Г	Г	•
A-C are replicates, D-F are replicates	A	В	С	Ave.	D	Е	F	Ave.
Habitat types: % $c = cobble$, $s = snags$, $vb =$				0s				0vb
vegetated banks, $s = sand$, $sm = submerged$ veg.								
Sample collection: $d = d$ frame, $s = surber$, $g = grab$	S	S	S		g	g	g	
Qualitative listing of aquatic biota: $0 = absent/not$								
observed, $1 = 1-3$, $2 = 3-9$, $3 = > 10$, $4 = > 50$ orgs.	0	0	0	0	0		0	0
Periphyton	0	0	0	0	0	0	0	0
Filamentous algae	0	0	0	0	0	0	0	0
Macrophytes	0	0	0	0	0	0	0	0
Slimes	0	0	0	0	0	0	0	0
Macroinvertebrates	0	0	0	0	0	0	0	0
Fish	0	0	0	0	0	0	0	0
Field observations of macrobenthos: $0 = absent/not$								
observed, 1 = rare (1-3), 2 = common (3-9), 3 =								
abundant (>10), 4 = dominant (>50 organisms)								
Porifera	0	0	0	0	0	0	0	0
Hydrozoa	0	0	0	0	0	0	0	0
Platyhelminthes	0	0	0	0	0	0	0	0
Turbellaria	0	0	0	0	0	0	0	0
Hirudinea	0	0	0	0	0	0	0	0
Oligochaeta	0	0	0	0	0	0	0	0
Isopoda	0	0	0	0	0	0	0	0
Amphipoda	0	0	0	0	0	0	0	0
Decapoda	0	0	0	0	0	0	0	0
Gastropoda	0	0	0	0	0	0	0	0
Bivalvia	0	0	0	0	0	0	0	0
Anisoptera	0	0	0	0	0	0	0	0
Zygoptera	0	0	0	0	0	0	0	0
Hemiptera	0	0	0	0	0	0	0	0
Coleoptera	0	0	0	0	0	0	0	0
Lepidoptera	0	0	0	0	0	0	0	0
Sialidae	0	0	0	0	0	0	0	0
Corydalidae	0	0	0	0	0	0	0	0
Tipulidae	0	0	0	0	0	0	0	0
Empididae	0	0	0	0	0	0	0	0
Simuliidae	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0
Culicidae	0	0	0	0	0	0	0	0
Chironomidae	0	0	0	0	0	0	0	0
Ephemeroptera	0	0	0	0	0	0	0	0
Trichoptera	0	0	0	0	0	0	0	0
	-	÷	0	0	0	0	0	0

 Table 5. Benthic macroinvertebrate field data sheet for MB1.

Ave. 30s 0 0 0	D g 0 0	g	F g	Ave. 0vb
30s 0 0 0	g 0	g		
30s 0 0 0	g 0	g		
0 0 0 0	0		g	Ovb
0 0	0		g	
0 0	0		g	
0 0	-			
0 0	-	0		
0 0	-		_	
0	\cap	0	0	0
-	-	0	0	0
	0	0	0	0
0	0	0	0	0
1.3	1	1	2	1.3
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	1	0	0	0.3
0	0	0	1	0.3
0.3	1	0	0	0.3
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
-	-	1		1
_		-	-	0
	_		0	0
_		-	-	0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 Table 6. Benthic macroinvertebrate field data sheet for MB3.

Stream Nemer Museusening Dreats				•				
Stream Name: Musquapsink Brook								
Station #: MB6	•	В	С	Aug	D	Е	F	A 1/2
A-C are replicates, D-F are replicates	A	В	C	Ave.	D	E	Г	Ave.
Habitat types: % $c = cobble$, $s = snags$, $vb = cobble$				30s				50vb
vegetated banks, $s = sand$, $sm = submerged veg$.	_		_		_	_		
Sample collection: $d = d$ frame, $s = surber$, $g = grab$	S	S	S		g	g	g	
Qualitative listing of aquatic biota: $0 = absent/not$								
observed, $1 = 1-3$, $2 = 3-9$, $3 = > 10$, $4 = > 50$ orgs.	0	0	0	0	0	0	0	0
Periphyton	0	0	0	0	0	0	0	0
Filamentous algae	0	0	0	0	0	0	0	0
Macrophytes Slimes	-	-	-	-	-	-	-	-
	0	0	0	0	0	0	0	0
Macroinvertebrates	2	2	2	2	1	3	2	2
Fish	0	U	0	0	0	0	0	0
Field observations of macrobenthos: $0 = absent/not$								
observed, $1 = rare(1-3)$, $2 = common (3-9)$, $3 = common (3-9)$, $3 = common (3-9)$, $3 = common (3-9)$, $4 = common (3-9)$, $5 = common (3-9)$, $3 = common (3-9)$								
abundant (>10), 4 = dominant (>50 organisms) Porifera	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
Hydrozoa	0	-	-	•	0	0	0	•
Platyhelminthes	0	0	0	0	0	0	0	0
Turbellaria	0	0	0	0	0	0	0	0
Hirudinea	0	0	0	0	0	0	0	0
Oligochaeta	0	0	0	0	0	0	0	0
Isopoda	0	0	0	0	0	0	0	0
Amphipoda	1	1	0	0.7	1	2	1	1.3
Decapoda	1	0	0	0.3	0	0	0	0
Gastropoda	0	0	0	0	0	0	0	0
Bivalvia	0	0	1	0.3	0	1	0	0.3
Anisoptera	0	0	0	0	0	1	0	0.3
Zygoptera	0	0	0	0	0	0	0	0
Hemiptera	0	0	0	0	0	0	0	0
Coleoptera	2	0	0	0.7	0	0	1	0.3
Lepidoptera	0	0	0	0	0	0	0	0
Sialidae	0	0	0	0	0	0	0	0
Corydalidae	0	0	0	0	0	0	0	0
Tipulidae	0	0	0	0	0	0	0	0
Empididae	0	0	0	0	0	0	0	0
Simuliidae	0	0	0	0	0	0	0	0
Tabanidae	0	0	0	0	0	0	0	0
Culicidae	0	0	0	0	0	0	0	0
Chironomidae	0	1	1	0.7	0	1	1	0.7
Ephemeroptera	0	1	0	0.3	0	0	0	0
Trichoptera	0	0	0	0	0	1	0	0.3
Other (Nematocera)	0	0	0	0	0	0	0	0

 Table 7. Benthic macroinvertebrate field data sheet for MB6.

	≠1 ⊥¥.		•	1		1	
┼──							
•	D	C	Arra	D	Б	F	A 110
A	В	C		D	E	Г	Ave.
			205				100 Vb
4	4	4		~	~	~	VD
a	a	a		g	g	g	
0	0	0	0	0	0	0	0
_	-		-				0
-	-	-	•	-			0
-	-	-	-	-			0
-			-				0
							0.7
0	0	0	0	0	0	0	0
	0	0		0	0		0
-			-				0
-	-	-	-	-		-	0
-	-		-				0
-	-	-	•				0
-	-	-	-	-		-	0
_			-				0
-	-		-	-			0
_	-	-	•			-	0
-	-	-	-	-			0
-	-	-	-				0
_		-	-	-			0
							0
_	-					-	0.7
0	-	0	-	-	-	-	0
1		0					0
_							0
0	0	0		0	0		0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
	A 0 0 0 0 0 0 0 0 0 0 0 0 0	A B A B d d d d 0 0	I I A B C A B C d d d d d d d d d 0 0 0	20s d d d d d d 0	I I I I A B C Ave. D A B C Ave. D I 20s I I I d d d d g 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I I I I I A B C Ave. D E A B C Ave. D E Q Q 20s I I Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	I I I I I I A B C Ave. D E F A B C Ave. D E F C 20s I I I I I I d d d d I <tdi< td=""></tdi<>

 Table 8. Benthic macroinvertebrate field data sheet for MB4.

Habitat assessment

Station MB1 is poor for epifaunal substrate/available cover, optimal for embeddedness, marginal for velocity/depth regime, optimal for sediment deposition and marginal for channel flow status for an overall score of marginal (Table 9).

MB3 is suboptimal for epifaunal substrate/available cover, marginal for embeddedness, suboptimal for velocity/depth regime, optimal for sediment deposition and suboptimal for channel flow status for an overall score of suboptimal (Table 10).

MB6 is suboptimal for epifaunal substrate/available cover, poor for embeddedness, suboptimal for velocity/depth regime, optimal for sediment deposition and optimal for channel flow status for an overall score of suboptimal (Table 11)

Station MB4 is marginal for epifaunal substrate/available cover, poor for embeddedness, poor for velocity/depth regime, optimal for sediment deposition and optimal for channel flow status for an overall score of marginal (Table 12).

MB6 having an overall score of suboptimal (Table 11) may be the reason why it was the only station to have a macroinvertebrate collection average of 2 (the number of macroinvertebrates collected is common) (Table 7). When considering the type of macroinvertebrates present, all stations, including MB6, have a collection average of 1 (the number in the different types of macroinvertebrates is rare) or 0 (the macroinvertebrates are absent/not observed). This suggests a lack of diversity or a lack in general. Like MB6, MB3 also has an overall habitat assessment score of suboptimal (Table 10) but it does not have a macroinvertebrate collection average of 2 (Table 6) like MB6. This suggests that the problem is not entirely related to the habitat.

Table 9. Habitat assessment field data sheet for MB1. Stream Name: Musquapsink Brook									
Habitat	Optimal	Suboptimal	Marginal	Poor					
parameter	Optillia	Suboptillia	Marginar	F 001					
1. Epifaunal substrate/ available cover Score:	Greater than 70% of substrate favorable for the epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well- suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking. 0					
2. Embeddedness Score:	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. 20	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.					
3. Velocity/depth regime Score:	All four velocity/depth regimes present (slow-deep, slow- shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s deep is $>$ 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow- shallow are missing, score low). 10	Dominated by 1 velocity/depth regime (usually slow-deep).					
4. Sediment deposition Score:	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. 20	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30- 50% of the bottom affected; sediment deposits at obstructions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
5. Channel flow status Score:	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. 10	Very little water in channel and mostly present as standing pools.					

Table 9. Habitat assessment field data sheet for MB1.	
---	--

Table 10. Habitat assessment field data sheet for MB3. Stream Name: Musquapsink Brook									
Habitat	Optimal	Suboptimal	Marginal	Poor					
parameter	Optilliai	Suboptimat	Iviaigiliai	1 001					
1. Epifaunal substrate/ available cover Score:	Greater than 70% of substrate favorable for the epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well- suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). 14	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.					
2. Embeddedness Score:	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment. 6	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.					
3. Velocity/depth regime Score:	All four velocity/depth regimes present (slow-deep, slow- shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s deep is $>$ 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes). 13	Only 2 of the 4 habitat regimes present (if fast- shallow or slow- shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).					
4. Sediment deposition Score:	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. 20	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30- 50% of the bottom affected; sediment deposits at obstructions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
5. Channel flow status Score:	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills >75% of the available channel; or <25% of channel substrate is exposed. 11	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					

Table 10. Habitat assessment field data sheet for MB3.	
--	--

Stream Name: M	usquapsink Brook			
Habitat	Optimal	Suboptimal	Marginal	Poor
parameter	1	1	C	
1. Epifaunal substrate/ available cover Score:	Greater than 70% of substrate favorable for the epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well- suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale). 13	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness Score:	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment. 5
3. Velocity/depth regime Score:	All four velocity/depth regimes present (slow-deep, slow- shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s deep is $>$ 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes). 15	Only 2 of the 4 habitat regimes present (if fast- shallow or slow- shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep).
4. Sediment deposition Score:	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. 20	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	50% of the bottom affected; sediment deposits at obstructions, constructions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel flow status Score:	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. 20	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.

Table 12. Habitat assessment field data sheet for MB4. Stream Name: Musquapsink Brook									
Habitat	Optimal	Suboptimal	Marginal	Poor					
parameter	optimu	Suboptinia	Iviarginar	1001					
1. Epifaunal substrate/ available cover Score:	Greater than 70% of substrate favorable for the epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are <u>not</u> new fall and <u>not</u> transient).	40-70% mix of stable habitat; well- suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of newfall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed. 10	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.					
2. Embeddedness Score:	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment. 0					
3. Velocity/depth regime Score:	All four velocity/depth regimes present (slow-deep, slow- shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast- shallow or slow- shallow are missing, score low).	Dominated by 1 velocity/depth regime (usually slow-deep). 5					
4. Sediment deposition Score:	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. 20	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30- 50% of the bottom affected; sediment deposits at obstructions, constructions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
5. Channel flow status Score:	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. 20	Water fills >75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					

Benthic Macroinvertebrates

At MB1 no macroinvertebrates were found (Table 13).

At MB3, the Hydropsychidae, the Gammaridae and the Chironomidae averaged 1 individual followed by the Asellidae with 0.3 (Table 14).

At MB6, the Gammaridae averaged 3 individuals by grab samples and 1 individual with the surber followed by the Elmidae, the Chironomidae and the Gomphidae with 1 (Table 15).

At MB4, the Coenagrionidae averaged 1 individual followed by the Psephenidae with 0.3 (Table 16).

Due to the inability of obtaining a 100-organism subsample, even if combining replicates A-C with D-F which could not be done because different techniques were used in replicates A-C and D-F, taxa richness, EPT Index, percent dominance, percent EPT, and FBI were not calculated for a score. This suggests that Musquapsink Brook should receive the most severe level of biological impairment.

Table 13. Benthic macroinvertebrate field da	ita s	nee	t 101	MBI.		1		
Stream Name: Musquapsink Brook								
Station #: MB1								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	Α	В	С	Ave.	D	Ε	F	Ave.
# of Oligochaeta	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda	0	0	0	0	0	0	0	0
# of Amphipoda	0	0	0	0	0	0	0	0
# of Decapoda	0	0	0	0	0	0	0	0
# of Ephemeroptera	0	0	0	0	0	0	0	0
# of Plecoptera	0	0	0	0	0	0	0	0
# of Trichoptera	0	0	0	0	0	0	0	0
# of Hemiptera	0	0	0	0	0	0	0	0
·								
# of Megaloptera	0	0	0	0	0	0	0	0
# of Coleoptera	0	0	0	0	0	0	0	0
•								
# of Diptera	0	0	0	0	0	0	0	0
•								
# of Gastropoda	0	0	0	0	0	0	0	0
•								
# of Pelecypoda	0	0	0	0	0	0	0	0
# of Other	0	0	0	0	0	0	0	0
	I				1	I	1	

Table 13. Benthic macroinvertebrate field data sheet for MB1.

Table 14. Benthic macroinvertebrate field da	ita s	nee	τ 101	<u>, MB2.</u>	<u> </u>	r –	r –	1
Stream Name: Musquapsink Brook						<u> </u>	<u> </u>	
Station #: MB3								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	Α	В	С	Ave.	D	E	F	Ave.
# of Oligochaeta	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda, Asellidae	0	0	0	0	1	0	0	0.3
# of Amphipoda, Gammaridae	0	0	0	0	0	0	2	0.7
# of Decapoda, Cambaridae	0	0	1	0.3	1	0	0	0.3
# of Ephemeroptera	0	0	0	0	0	0	0	0
# of Plecoptera	0	0	0	0	0	0	0	0
	-	-	-	-	-	-		-
# of Trichoptera, Hydropsychidae	0	0	4	1.3	0	0	0	0
			-	1.0		Ŭ		
# of Hemiptera	0	0	0	0	0	0	0	0
	•	Ŭ	Ŭ	Ŭ	•	Ŭ	Ŭ	Ŭ
# of Megaloptera	0	0	0	0	0	0	0	0
		Ŭ	Ŭ			Ū		0
# of Coleoptera, beetle larva	0	1	3	1.3	0	0	0	0
Elmidae	0	0	1	0.3	0	0	0	0
# of Diptera	0	0	0	0.5	0	0	0	0
		Ŭ	Ŭ	0				0
# of Gastropoda	0	0	0	0	0	0	0	0
	U	0	0	0	U	0	0	U
# of Pelecypoda	0	0	0	0	0	0	0	0
	U	0	0	0	U	0	0	0
# of Other, Nematocera, Chironomidae	0	0	1	0.3	0	1	4	1.7
	U	U	1	0.3	U	1	+	1./

Table 14. Benthic macroinvertebrate field data sheet for MB3.

Table 15. Benthic macroinvertebrate field da Stream Name: Musquapsink Brook	ita s	nee	l 101	TVIDO.				
Station #: MB6								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	Α	В	С	Ave.	D	Е	F	Ave.
# of Oligochaeta	0	0	0	0	$\frac{D}{0}$	0	0	0
	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda, Asellidae	0	1	0	0.3	0	0	0	0
# of Amphipoda, Gammaridae	1	3	0	1.3	2	5	1	2.7
# of Decapoda, Cambaridae	1	0	0	0.3	0	0	0	0
# of Ephemeroptera, Baetidae	0	2	0	0.7	0	0	0	0
# of Plecoptera	0	0	0	0	0	0	0	0
# of Trichoptera, Hydropsychidae	0	0	0	0	0	1	0	0.3
# of Hemiptera	0	0	0	0	0	0	0	0
# of Megaloptera	0	0	0	0	0	0	0	0
# of Coleoptera, beetle larva	7	0	0	2.3	0	0	0	0
Elmidae	1	0	0	0.3	0	0	2	0.7
# of Diptera	0	0	0	0	0	0	0	0
# of Gastropoda	0	0	0	0	0	0	0	0
# of Pelecypoda, Corbiculidae	0	0	3	1	0	1	0	0.3
# of Other, Nematocera, Chironomidae	0	2	1	1	0	1	1	0.7
	U	2	1	1	U	1	1	0.7
Anisoptera, Gomphidae	0	0	0	0	0	2	0	0.7

Table 15. Benthic macroinvertebrate field data sheet for MB6.

Table 16. Benthic macroinvertebrate field da Stream Name: Musquapsink Brook	ita s	nee	t toi	r 1 VIB4.				
Station #: MB4								
Investigator: Dr. Marion McClary and students								
	Α	В	C	Ave.	D	Е	F	Ave.
A-C are replicates, D-F are replicates								
# of Oligochaeta	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	U	0
# of Amphipoda	0	0	0	0	0	0	0	0
	0	0	U	0	0	0	U	0
# of Decapoda	0	0	0	0	0	0	0	0
	0	0	U	0	0	0	U	0
# of Ephemeroptera	0	0	0	0	0	0	0	0
	U	U	U	Ū		0	v	0
# of Plecoptera	0	0	0	0	0	0	0	0
	v	Ŭ	Ŭ	0		Ū	v	0
# of Trichoptera	0	0	0	0	0	0	0	0
	Ŭ	Ŭ	Ŭ	0	Ŭ		Ŭ	0
# of Hemiptera	0	0	0	0	0	0	0	0
			-	-	-	-	-	-
# of Megaloptera	0	0	0	0	0	0	0	0
	-	-	-	_	-	-	-	-
# of Coleoptera, Psephenidae	1	0	0	0.3	0	0	0	0
# of Diptera	0	0	0	0	0	0	0	0
# of Gastropoda	0	0	0	0	0	0	0	0
# of Pelecypoda	0	0	0	0	0	0	0	0
# of Other, Anisoptera	1	1	0	0.7	0	0	0	0
Zygoptera, Coenagrionidae	0	2	1	1	2	2	0	1.3

Table 16. Benthic macroinvertebrate field data sheet for MB4.

References

- NWCC Technical Note 99-1, Stream Visual Assessment Protocol, December 1998. 2 pgs.
- Peckarsky, B.L., Fraissinet, P.R., Penton, M.A., and Conklin, Jr., D.J. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. Ithaca, N.Y. 442 pgs.
- Rawlyk, W. 1998. The Common Benthic Macroinvertebrates of New Jersey Streams: A Field Guide to Family Level Identification. William Rawlyk. 101 pgs.
- USEPA 1997. Volunteer Monitoring Guide for Macroinvertebrate Sampling and Data Analysis: New Jersey Impairment Score (NJIS) Bioassessment.
- USEPA Rapid Bioassessment Protocols for use in Streams and Wadeable Rivers (EPA 841-B-99-002 Nov. 1999).

Musquapsink Brook Benthic Species List

Prepared by:

Marion McClary, Jr., Ph.D. Associate Professor of Biological Sciences Associate Director of Biological Sciences Fairleigh Dickinson University

for

Rutgers Cooperative Extension Water Resources Program as part of RP07-002 Musquapsink Brook Watershed Restoration and Protection Plan

June 2009

Table 1. Benthic macroinvertebrate field dat	a sh	eet	tor .	MBI.	1	1	1	1
Stream Name: Musquapsink Brook								
Station #: MB1								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	А	В	С	Ave.	D	Е	F	Ave.
# of Oligochaeta	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda	0	0	0	0	0	0	0	0
# of Amphipoda	0	0	0	0	0	0	0	0
# of Decapoda	0	0	0	0	0	0	0	0
# of Ephemeroptera	0	0	0	0	0	0	0	0
# of Plecoptera	0	0	0	0	0	0	0	0
# of Trichoptera	0	0	0	0	0	0	0	0
# of Hemiptera	0	0	0	0	0	0	0	0
# of Megaloptera	0	0	0	0	0	0	0	0
# of Coleoptera	0	0	0	0	0	0	0	0
# of Diptera	0	0	0	0	0	0	0	0
# of Gastropoda	0	0	0	0	0	0	0	0
# of Pelecypoda	0	0	0	0	0	0	0	0
# of Other	0	0	0	0	0	0	0	0
	1							
	L		L		L	L	L	

Table 1. Benthic macroinvertebrate field data sheet for MB1.

Table 2. Benthic macroinvertebrate field dat	a sn	eet	IOP .	MB3.	r –	r	1	1
Stream Name: Musquapsink Brook								
Station #: MB3								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	Α	В	С	Ave.	D	E	F	Ave.
# of Oligochaeta	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda, Asellidae, Caecidotea sp.	0	0	0	0	1	0	0	0.3
# of Amphipoda, Gammaridae,	0	0	0	0	0	0	2	0.7
Gammarua fasciatus								
# of Decapoda, Cambaridae	0	0	1	0.3	1	0	0	0.3
Orconectes virilis								
# of Ephemeroptera	0	0	0	0	0	0	0	0
-								
# of Plecoptera	0	0	0	0	0	0	0	0
# of Trichoptera, Hydropsychidae,	0	0	4	1.3	0	0	0	0
Hydropsyche sp.								
# of Hemiptera	0	0	0	0	0	0	0	0
•								
# of Megaloptera	0	0	0	0	0	0	0	0
# of Coleoptera, beetle larva	0	1	3	1.3	0	0	0	0
Elmidae, Dubiraphia sp.	0	0	1	0.3	0	0	0	0
# of Diptera	0	0	0	0	0	0	0	0
# of Gastropoda	0	0	0	0	0	0	0	0
•								
# of Pelecypoda	0	0	0	0	0	0	0	0
# of Other, Nematocera, Chironomidae,	0	0	1	0.3	0	1	4	1.7
Axarus sp.								
T .								
		I	I	1	<u> </u>			l

 Table 2. Benthic macroinvertebrate field data sheet for MB3.

Table 3. Benthic macroinvertebrate field dat	a sn	eet	IOP .	MB6.	1	1	1	,
Stream Name: Musquapsink Brook								
Station #: MB6								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	Α	В	С	Ave.	D	E	F	Ave.
# of Oligochaeta	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda, Asellidae, Caecidotea sp.	0	1	0	0.3	0	0	0	0
# of Amphipoda, Gammaridae,	1	3	0	1.3	2	5	1	2.7
Gammarus fasciatus								
# of Decapoda, Cambaridae,	1	0	0	0.3	0	0	0	0
Orconectes virilis								
# of Ephemeroptera, Baetidae, Callibaetis sp.	0	2	0	0.7	0	0	0	0
# of Plecoptera	0	0	0	0	0	0	0	0
# of Trichoptera, Hydropsychidae,	0	0	0	0	0	1	0	0.3
<i>Hydropsyche</i> sp.								
# of Hemiptera	0	0	0	0	0	0	0	0
# of Megaloptera	0	0	0	0	0	0	0	0
# of Coleoptera, Optioservus sp.	7	0	0	2.3	0	0	0	0
Elmidae, Dubiraphia sp.	1	0	0	0.3	0	0	2	0.7
# of Diptera	0	0	0	0	0	0	0	0
# of Gastropoda	0	0	0	0	0	0	0	0
# of Pelecypoda, Corbiculidae,	0	0	3	1	0	1	0	0.3
Corbicula fluminea								
# of Other, Nematocera, Chironomidae,	0	2	1	1	0	1	1	0.7
Axarus sp.								
Anisoptera, Gomphidae, Hagenius sp.	0	0	0	0	0	2	0	0.7
							1	
					1	1	1	
					1	1	1	
				I	I	I	I	I

Table 3. Benthic macroinvertebrate field data sheet for MB6.

Table 4. Benthic macroinvertebrate field dat	a sh	eet	for	MB4.				1
Stream Name: Musquapsink Brook								
Station #: MB4								
Investigator: Dr. Marion McClary and students								
A-C are replicates, D-F are replicates	Α	В	С	Ave.	D	Е	F	Ave.
# of Oligochaeta	0	0	0	0	0	0	0	0
# of Hirudinea	0	0	0	0	0	0	0	0
# of Isopoda	0	0	0	0	0	0	0	0
# of Amphipoda	0	0	0	0	0	0	0	0
# of Decapoda	0	0	0	0	0	0	0	0
# of Ephemeroptera	0	0	0	0	0	0	0	0
# of Plecoptera	0	0	0	0	0	0	0	0
# of Trichoptera	0	0	0	0	0	0	0	0
# of Hemiptera	0	0	0	0	0	0	0	0
# of Megaloptera	0	0	0	0	0	0	0	0
# of Coleoptera, Psephenidae,	1	0	0	0.3	0	0	0	0
Psephenus herricki								
# of Diptera	0	0	0	0	0	0	0	0
# of Gastropoda	0	0	0	0	0	0	0	0
# of Pelecypoda	0	0	0	0	0	0	0	0
# of Other, Anisoptera, Hagenius sp.	1	1	0	0.7	0	0	0	0
Zygoptera, Coenagrionidae, Argia sp.	0	2	1	1	2	2	0	1.3

 Table 4. Benthic macroinvertebrate field data sheet for MB4.

References

- NWCC Technical Note 99-1, Stream Visual Assessment Protocol, December 1998. 2 pgs.
- Peckarsky, B.L., Fraissinet, P.R., Penton, M.A., and Conklin, Jr., D.J. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. Ithaca, N.Y. 442 pgs.
- Rawlyk, W. 1998. The Common Benthic Macroinvertebrates of New Jersey Streams: A Field Guide to Family Level Identification. William Rawlyk. 101 pgs.

Appendix B: Tabulated Stream Visual Assessment Protocol (SVAP) Data

REACH LOCATION	DATE	HYDROLOGIC ALTERATATION	CHANNEL CONDITION	RIPARIANZONE 1	RIPARIAN ZONE 2	BANKSTABILITY	BANKSTABILITY 2	WATER APPEARANCE	NUTRIENT ENRICHMENT	FISH BARRIER	INSTREAM FISHCOVER	POOLS	INVERTEBRATES	CANOPY COVER	MANURE PRESENCE	SALINITY	RIFFLE EMBEDEDNESS	MACROINVERTEBRATES	SITE AVERAGE
E3R005	6/29/07	NA	3	3	1	6	6	5	4	1	3	5	5	1	NA	NA	NA	NA	3.5
GB2R001	5/10/07	1	1	1	3	1	1	10	8	1	8	1	7	7	NA	NA	9	NA	4.7
E4R007	6/29/07	NA	3	5	3	5	7	7	7	7	5	3	7	1	NA	NA	NA	NA	5.0
GD2R001	5/10/07	5	3	5	1	3	5	10	8	1	3	1	7	7	NA	NA	10	NA	5.2
F2R005	7/3/07	NA	7	10	6	7	3	3	7	10	3	3	3	3	NA	NA	NA	NA	5.2
E3R004	6/29/07	NA	5	4	3	3	3	3	3	8	7	7	8	7	NA	NA	NA	NA	5.2
E4R006	6/29/07	NA	1	2	2	3	3	7	7	7	7	5	7	7	NA	NA	NA	NA	5.3
E4R009	6/29/07	NA	6	6	2	2	2	5	6	7	5	3	7	10	NA	NA	NA	NA	5.5
GD2R002	5/10/07	3	1	4	10	1	2	10	9	3	8	3	7	8	NA	NA	9	NA	5.6
GC2R001	4/30/07	5	8	4	8	3	3	10	9	1	3	1	7	8	NA	NA	8	NA	5.7
ge3r002	6/13/07	10	10	8	3	10	7	7	7	1	5	5	3	1	NA	NA	0	NA	5.7
G1R002	7/6/07	NA	1	3	3	7	7	8	7	6	5	5	6	10	NA	NA	NA	NA	5.8
F2R002	7/3/07	NA	6	10	6	8	6	8	7	8	3	5	3	3	NA	NA	NA	NA	5.8
GB2R002	5/10/07	7	7	1	1	5	5	10	10	1	8	1	10	1	NA	NA	10	NA	5.9
GF2R001	5/15/07	7	8	10	10	8	3	3	3	10	5	1	3	10	NA	NA	0	NA	6.0
G1R001	7/6/07	NA	3	8	6	3	5	8	8	5	5	7	7	7	NA	NA	NA	NA	6.1
F3R001	6/29/07	NA	6	5	6	4	4	7	3	7	8	7	7	7	NA	NA	NA	NA	6.2
ge2r002	6/13/07	7	7	9	8	8	9	7	7	4	5	5	7	3	NA	NA	5	NA	6.2
F3R002	6/29/07	NA	7	7	3	7	3	7	7	8	3	6	7	7	NA	NA	NA	NA	6.2
F2R003a	7/6/07	NA	8	10	10	5	2	5	5	7	5	3	7	10	NA	NA	NA	NA	6.4
gf2r004	6/13/07	8	9	10	10	10	9	7	7	3	3	3	3	8	NA	NA	0	NA	6.5

REACH LOCATION	DATE	HYDROLOGIC ALTERATATION	CHANNEL CONDITION	RIPARIANZONE 1	RIPARIAN ZONE 2	BANKSTABILITY	BANKSTABILITY 2	WATER APPEARANCE	NUTRIENT ENRICHMENT	FISH BARRIER	INSTREAM FISHCOVER	POOLS	INVERTEBRATES	CANOPY COVER	MANURE PRESENCE	SALINITY	RIFFLE EMBEDEDNESS	MACROINVERTEBRATES	SITE AVERAGE
GD2R002	5/15/07	8	7	8	10	10	10	10	9	1	5	1	3	10	NA	NA	0	NA	6.6
F2R003b	7/6/07	NA	8	10	7	5	5	9	8	8	5	1	7	7	NA	NA	NA	NA	6.7
ge3r001	6/13/07	10	10	8	5	10	10	7	8	10	5	3	3	1	NA	NA	0	NA	6.7
F2R001	7/3/07	NA	7	5	8	4	7	9	8	8	5	3	7	8	NA	NA	NA	NA	6.7
GC2R002	4/30/07	8	8	10	5	8	8	9	9	3	3	1	7	9	NA	NA	10	NA	6.9
E4R008	6/29/07	NA	7	9	5	5	5	5	7	8	7	5	8	10	NA	NA	NA	NA	6.9
F2R004	7/3/07	NA	9	8	3	5	7	3	7	10	6	7	7	9	NA	NA	NA	NA	7.0
F2R003	7/3/07	NA	5	9	9	9	8	3	7	10	7	8	7	6	NA	NA	NA	NA	7.1
ge2r003	6/13/07	5	8	8	10	6	6	10	8	1	8	7	7	7	NA	NA	10	NA	7.2
ge2r004	6/13/07	7	8	8	10	7	8	10	9	3	5	1	7	10	NA	NA	10	NA	7.2
gf2r003	6/13/07	3	8	9	10	5	5	10	9	3	5	8	7	10	NA	NA	10	NA	7.3
GD2R001	5/15/07	7	8	10	10	2	8	10	9	10	5	1	3	10	NA	NA	10	NA	7.4
GA2R001	5/10/07	8	7	10	10	4	8	10	8	1	8	3	10	10	NA	NA	10	NA	7.5
F3R003	6/29/07	NA	8	10	7	7	7	7	7	8	7	7	7	10	NA	NA	NA	NA	7.7
GE2R002	5/15/07	9	7	10	8	10	10	10	10	0	0	1	3	10	NA	NA	0	NA	7.7
GE2R001	5/15/07	8	8	10	7	10	8	10	9	10	3	1	7	10	NA	NA	8	NA	7.8
GF2R002	5/15/07	8	10	10	10	5	5	10	10	10	8	3	7	10	NA	NA	0	NA	8.3

Appendix C: Quality Assurance Project Plan, RP 07-002 Musquapsink Brook Watershed Restoration Plan, Rutgers Cooperative Extension Water Resources Program

QUALITY ASSURANCE PROJECT PLAN

RP07-002 MUSQUAPSINK BROOK WATERSHED RESTORATION PLAN

Rutgers Cooperative Extension Water Resources Program

January 8, 2007

Revised & Resubmitted April 12, 2007

Revised & Resubmitted May 15, 2007

QUALITY ASSURANCE PROJECT PLAN

RP07-002 MUSQUAPSINK BROOK WATERSHED RESTORATION PLAN

Rutgers Cooperative Extension Water Resources Program

Applicant/ Project Officer: Christopher C. Obropta, Ph.D., P.E. Rutgers Cooperative Extension Water Resources Program 14 College Farm Road – 2nd Floor New Brunswick, NJ 08901-8551 732-932-9800 x 6209 (phone); 732-932-8644 (fax) obropta@envsci.rutgers.edu

high COG

Signature

Date

QA Officers:

Lisa Galloway Evrard Rutgers Cooperative Extension Water Resources Program 14 College Farm Road – 2nd Floor New Brunswick, NJ 08901-8551 732-932-9800 x 6130 (phone); 732-932-8644 (fax) evrard@rci.rutgers.edu

Lisa Galloway Eurard

Signature

Date

NJDEP Main Point of Contact:

Michele Bakacs Watershed Management Area 5 Manager Division of Watershed Management New Jersey Department of Environmental Protection 401 East State Street P.O. Box 418 Trenton, New Jersey 08625-0418 609-292-9247 (phone); 609-633-0750 (fax) Michele.Bakacs@dep.state.nj.us

Signature

Date

NJDEP Additional Data Quality Review: Beth Torpey Division of Watershed Management New Jersey Department of Environmental Protection 401 East State Street P.O. Box 418 Trenton, New Jersey 08625-0418 609-633-1471 (phone); 609-633-0750 (fax) <u>Beth.Torpey@dep.state.nj.us</u>

Signature

Date

NJDEP Office of Quality Assurance: Marc Ferko Research Scientist Office of Quality Assurance New Jersey Department of Environmental Protection 9 Ewing Street P.O. Box 424 Trenton, NJ 08625-0418 609-292-3950 (phone); 609-777-1774 (fax) Marc.Ferko@dep.state.nj.us

Signature

1.	Project Name:	Musquapsink Brook Watershed Restoration Plan
	Requested By:	Michele Bakacs New Jersey Department of Environmental Protection

- 2. This project has been initiated by the New Jersey Department of Environmental Protection to collect data needed to prepare a comprehensive watershed restoration plan for the Musquapsink Brook.
- Date Project Requested: January 2007
 Date Project Initiated: May 2007
 Project Officer: Christopher C. Obropta, Ph.D., P.E. Rutgers Cooperative Extension Water Resources Program
 QA Officer: Lisa Galloway Evrard Rutgers Cooperative Extension Water Resources Program

7. Project Description:

A. <u>Objective and Scope</u>

The proposed watershed study area is the Musquapsink Brook Watershed of Watershed Management Area 5 (WMA 5). The Musquapsink Brook Watershed, Hydrologic Unit Code 02030103170020, is approximately nine square miles in size. Based upon numerous monitoring sources, including the New Jersey Department of Environmental Protection (NJDEP) Ambient Biomonitoring Network (AMNET) program and the NJDEP/United States Geological Survey (USGS) water quality monitoring network, water quality impairments exist in the Musquapsink Brook Watershed.

According to the *New Jersey 2004 Integrated Water Quality Monitoring and Assessment Report,* the Musquapsink Brook maintains the following listings:

- Sublist 3 No data or information are available to support attainment determination: cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc;
- Sublist 4 Attainment is threatened or waterbody is impaired; a TMDL has been developed and/or approved <u>or</u> pollution control measures do not require a TMDL: fecal coliform;
- Sublist 5 Water quality standard is not being attained and requires a TMDL: aquatic life, total phosphorus, and arsenic.

According to the recently adopted 2006 Integrated List, which uses a HUC-14 based water quality impairment listing methodology, the Musquapsink Brook Watershed (HUC 02030103170020), maintains the following listings:

• Sublist 4 for fecal coliform, phosphorus (primary recreation)

• Sublist 5 for drinking water, agricultural use, total dissolved solids (TDS), arsenic, aquatic life (general).

Based on the Total Maximum Daily Load (TMDL) prepared for the Musquapsink Brook at River Vale, USGS 01377499, a 96% reduction in fecal coliform load for 6.6 miles of stream is needed. Additional aquatic life and total phosphorus surface water quality impairments will also need to be addressed through the TMDL process.

B. Data Usage

The data collected in accordance with this Quality Assurance Project Plan (QAPP) will help describe both dry weather and wet weather water quality conditions. These data will provide the information needed to identify and quantify sources of pollution so that appropriate management practices can be implemented to minimize these sources.

C. <u>Monitoring Network Design and Rationale</u>

Sampling Locations:

A draft of this QAPP was forwarded to various stakeholders by Michele Bakacs on 2/16/07 for review and comment. In addition, an overview of the QAPP, in particular a review of all the sampling locations for the study, was presented by the Rutgers Cooperative Extension Water Resources Program at the Northeast NJ Watershed Alliance March meeting on 3/6/07 for review and comment. An additional presentation regarding addressing fecal contamination in the watershed was presented by the Rutgers Cooperative Extension Water Resources Program at the Northeast NJ Watershed Alliance March meeting on 3/6/07 for review and comment. An additional presentation regarding addressing fecal contamination in the watershed was presented by the Rutgers Cooperative Extension Water Resources Program at the Northeast NJ Watershed Alliance April meeting on 4/10/07 for review and comment.

The sampling locations, following the above referenced presentations, are shown in Attachment A. The eight sampling stations throughout the watershed are as follows:

	Musquapsink Brook Proposed Water Quality Stations		
Station ID	Station Name	Northing	Easting
SR1	Saddle River at Grove St., Ridgewood, NJ	604,246	775,678
HB1	Hohokus Brook at Saddle River County Park, Ridgewood, NJ	600,871	775,240
MB1	Musquapsink Brook at Hillsdale Ave, Hillsdale, NJ	612,208	791,635
MB2	Musquapsink Brook at Woodfield, below Schlegel Lake, Washington, NJ	613,070	784,469
MB3	Musquapsink Brook at Ridgewood Ave, Washington, NJ	612,454	782,650
MB4	Musquapsink Brook at Forest Ave, Westwood, NJ	617,409	781,658
MB5	Musquapsink Brook at Third Ave, Westwood, NJ	619,373	783,768
MB6	Musquapsink Brook at Harrington Avenue, Westwood, NJ	623,729	786,736

A WAAS-enable Garmin Rino 120 GPS (global positioning system) unit will be used to locate and identify the sampling locations. Sampling locations will be marked with stakes and surveying tape *or flags*. Field personnel will take GPS readings in the field to aid in verifying the correct sampling locations during the first sampling event.

Basis for Sampling Locations:

Surface water quality sampling will be conducted to assess the loading inputs of nutrients, total suspended solids and bacteria to the Musquapsink Brook, as well as the movement of nutrients, total suspended solids and bacteria from basin to basin to identify and quantify the sources of pollution under dry weather and wet weather conditions. Biological sampling will be conducted so that the benthic macroinvertebrate community can be better characterized, compared, and evaluated for biological integrity within the study area.

- Location SR1 Saddle River at Grove Street, Ridgewood was selected to monitor the Saddle River upstream of the United Water interbasin transfer site.
- Location HB1 Hohokus Brook at Saddle River County Park, Ridgewood was selected to monitor the Hohokus Brook upstream of the United Water interbasin transfer location.
- Location MB1 Musquapsink Brook at Hillsdale Avenue, Hillsdale was selected to yield water quality information on the headwaters of the Musquapsink Brook.
- Location MB2 Musquapsink Brook at Woodfield Avenue, Washington was selected to yield water quality information on Musquapsink Brook just downstream of the spillway/discharge from Schlegel Lake and upstream from the interbasin discharge point.
- Location MB3 Musquapsink Brook at Ridgewood Avenue, Westwood was selected to yield water quality information on the Musquapsink Brook below the interbasin transfer.
- Location MB4 Musquapsink Brook at Forest Avenue, Westwood was selected to yield water quality information on the Musquapsink Brook downstream from the confluence with an unnamed tributary to the Musquapsink.
- Location MB5 Musquapsink Brook at Third Avenue, Westwood was selected to yield water quality information on the Musquapsink Brook as the stream flows further downstream through the watershed and to monitor any inputs from the large duck and goose population in this area, as well as drainage from the Beth El and Cedar Park Cemeteries.
- Location MB6 Musquapsink Brook at Harrington Avenue, Westwood was selected to yield water quality information on the Musquapsink Brook at the most downstream location within the study area prior to the confluence with Pascack Brook.

Temporal and Spatial Aspects:

Biweekly Surface Water Sampling

Surface water quality samples will be collected from all sampling locations in a downstream to upstream order to avoid disturbances to downstream water column samples twice a month, independent of weather, from May through October 2007 (12 events). Three additional surface water quality samples will be collected from all sampling locations in June, July, and August 2007 for fecal coliform and *Eschericia coli* (*E. coli*) analyses (nine additional sampling events). These nine additional sampling events will be independent of precipitation and will allow for a total of five fecal coliform, as well as five *E. coli* analyses at all sampling locations within a 30 day period during the warmer summer months. NJDEP considers the warm weather sampling months to fall between Memorial Day (i.e., May 28, 2007) and Labor Day (i.e., September 3, 2007).

All scheduling is subject to the natural occurrence of appropriate stream flow conditions (i.e., non-flooding conditions). In accordance with the Field Sampling Procedures Manual (See

Section 6.8.1.1, Chapter 6D – page 59 of 188), field personnel will not wade into flowing water when the product of depth (in feet) and velocity (in feet per second) equals ten or greater to ensure the health and safety of all field personnel. If the stream flow conditions preclude entry into the stream, samples will be collected from the closest bridge crossing to that location or from the stream bank.

Bacteriology samples will be collected directly into a bacteriological sample container in accordance with the methods outlined in section 6.8.2.2.7 of the Field Sampling Procedures Manual (See Chapter 6D - page 67 of 188). Composite samples will not be collected for bacteriology samples.

For the most part, the Musquapsink Brook and its tributaries are uniformly mixed, which warrants grab sampling (See Section 6.8.2.2.3, Chapter 6D-Page 66 of 188 of the Field Sampling Procedures Manual). A single grab sample will be collected at all locations where the stream width is six feet or less. At stream locations with a width greater than six feet, <u>a minimum</u> of three subsurface grab samples (i.e., quarter points) will be collected at equidistant points across the stream. The number of individual samples in a composite varies with the width of the stream being sampled. Horizontal intervals will be <u>at least</u> one foot wide (See Section 6.8.2.2.2, Chapter 6D – Page 64 of 188 of the Field Sampling Procedures Manual). These grab samples then will be composited in a larger volume container from which the desired volume will be transferred to the sample bottles. A dedicated large volume container will be assigned to each sample location.

Field equipment used for surface water quality sample collection (i.e., bottles and buckets) will be decontaminated/cleaned <u>in the laboratory</u> prior to each sampling event. A dedicated large volume container will be assigned to each sample location. Prior to each sampling event, the large volume containers will be decontaminated <u>in the laboratory</u> using the following procedures in accordance with the Field Sampling Procedures Manual (See Chapter 2A – Page 10 of 61): 1) laboratory grade glassware detergent plus tap water wash, 2) generous tap water rinse, 3) distilled/deionized water rinse, 4) 10% nitric acid rinse, 5) distilled/deionized water rinse. Note that the samples collected will not be analyzed for metals or organics. Also, field equipment decontamination water will be disposed of in accordance with the laboratory's Standard Operating Procedures and Quality Assurance Manual.

Wet Weather Surface Water Sampling

Three wet weather sampling events, at a minimum, will be conducted between May and October 2007 at each station. The wet weather samples for this plan will be in addition to the 12 biweekly surface water sampling events described above. Collection of stormwater samples will begin at the onset of the storm (i.e., a storm predicted to produce a minimum of ½ inch of precipitation), and an attempt will be made to span the course of the event. By using this method of sampling, the samples should accurately reflect loading for the entire event. A priority will be to acquire first flush samples. Flow will be measured along with concentrations to quantify loading for selected parameters. A total of three samples will be obtained between the onset of the storm and the time when the flow reaches the pre-storm level, unless impractical, at each station during each storm event. At each station, the samples obtained for the entire event will be flow-weight composited to provide one sample from each station, with the exception of fecal

coliform and *E. coli*, which will require analysis of each individual grab sample. Rainfall data will be collected from a rain gauge that will be installed in the watershed.

If three samples can not be collected between the onset of the storm and the time when the flow reaches the pre-storm level, then the sampling event will not count as a wet weather surface water sampling event. If three $\frac{1}{2}$ inch storm events are not captured between May - October 2007, the Water Resources Program, after consultation with the Department, may have to defer the Wet Weather Surface Water Sampling portions of the study to May – October 2008. Attempts will be made to conduct this portion of the study as early on in the study period as possible. Regarding time for collection of the first flush samples, the Water Resources Program will attempt to capture the first flush using the expected or anticipated rising limb of the hydrograph. The actual point on the hydrograph will have to be confirmed after sample completion.

Biological Sampling

Samples of the benthic macroinvertebrate community will be collected in accordance with the Rapid Bioassessment Protocol (RBP) procedure used by the NJDEP Bureau of Freshwater and Biological Monitoring, which is based on USEPA's *Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers* (EPA 841-B-99-002 Nov. 1999). A multihabitat sampling approach, concentrating on the most productive habitat of the stream plus coarse particulate organic matter (CPOM) or leaf litter, will be used. Benthic macroinvertebrates will be collected from four locations (i.e., MB1, MB3, MB4, and MB6) once in either early summer or late summer as described in Attachment B. The biological sampling locations were selected to bracket the upstream and downstream boundaries of the study areas, as well as to characterize as much of the study area as possible since there are no AMNET monitoring locations on the Musquapsink Brook. In addition, locations with comparable substrate, canopy coverage, and flow conditions were selected within the study area for data comparability.

		I	1	
Type:	Biweekly Surface Water Sampling	Additional Bacteriology Sampling	Wet Weather Surface Water Sampling	Biological Sampling
Frequency:	Two (2) times a month from May - October 2007 (12 events)	Three (3) times, in addition to biweekly samples, in June, July, & August 2007 (9 events)	Three (3) times between May - October 2007 (3 events)	One (1) time in either early summer <u>or</u> late summer (1 event)
Parameters:	pH, temperature, dissolved oxygen, stream width, stream depth, stream velocity, ammonia-N, nitrate-N, nitrite-N, total Kjeldahl nitrogen, total phosphorus, dissolved orthophosphate phosphorus, total suspended solids, fecal coliform, <i>E.</i> <i>coli</i>	Stream width, stream depth, stream velocity, fecal coliform, <i>E.</i> <i>coli</i>	pH, temperature, dissolved oxygen, stream width, stream depth, stream velocity, ammonia-N, nitrate-N, nitrite-N, total Kjeldahl nitrogen, total phosphorus, dissolved orthophosphate phosphorus, total suspended solids, fecal coliform, <i>E.</i> <i>coli</i>	pH, temperature, dissolved oxygen, stream width, stream depth, stream velocity, total dissolved solids, benthic macroinvertebrate survey, habitat assessment
Sampling Lo				
SR1	Х	X	X	
HB1	Х	Х	X	
MB1	Х	Х	X	X
MB2	Х	Х	X	
MB3	Х	Х	X	X
MB4	Х	Х	X	X
MB5	X	X	X	
MB6	Х	Х	X	X

Summary of Monitoring Network Design and Rational – Temporal and Spatial Aspects

D. <u>Monitoring Parameters</u>

Surface water quality sample collection will be conducted by the Rutgers Cooperative Extension Water Resources Program (RCE WRP). Stream width, stream depth, and stream velocity will be measured in accordance with the methods outlined in Attachment C by the RCE WRP. *In situ* measurements of pH, temperature, and dissolved oxygen will be conducted by the Rutgers EcoComplex Laboratory (NJDEP Certified Laboratory #03019). Collected samples will be analyzed for fecal coliform, ammonia-nitrogen, total Kjeldahl nitrogen, total phosphorus, dissolved orthophosphate phosphorus, and total suspended solids by Bergen County Utilities Authority (NJDEP Certified Laboratory #02268). Collected samples will also be analyzed for nitrate-nitrogen, nitrite-nitrogen, and total dissolved solids by Hampton Clarke Veritech (NJDEP Certified Laboratory #14622) via the Bergen County Utilities Authority. In addition, collected samples will be analyzed for *E. coli* by Garden State Laboratories (NJDEP Certified Laboratory #20044).

Biological sampling will include benthic macroinvertebrate grab/jab type sampling, along with the collection of CPOM. Physicochemical measurements will include total dissolved solids and *in situ* pH, temperature, dissolved oxygen, stream width, stream depth, and stream velocity. Benthic macroinvertebrate sampling and identification will be conducted by Marion McClary, Jr., Ph.D., Associate Professor of Biological Sciences and Associate Director of Biological Sciences at Fairleigh Dickinson University, in accordance with the Rapid Bioassessment Protocol (RBP) procedure used by the NJDEP Bureau of Freshwater and Biological Monitoring, which is based on USEPA's *Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers* (EPA 841-B-99-002 Nov. 1999). The RCE WRP will make stream width, stream depth, and stream velocity determinations in accordance with the procedures specified in Attachment C. *In situ* measurements of pH, temperature, and dissolved oxygen will be conducted by the Rutgers EcoComplex Laboratory (NJDEP Certified Laboratory #03019). Total dissolved solids will be measured by Hampton Clarke Veritech (NJDEP Certified Laboratory #14622) via the Bergen County Utilities Authority.

E. <u>Parameter Table</u>

Measurements of the sampled parameters will be performed in accordance with Table 1A – List of Approved Biological Methods and Table 1B – List of Approved Inorganic Test Procedures (40 CFR Part 136.3) of Attachment D. Sample containers, preservation techniques, and holding times will be in accordance with Table II (40 CFR Part 136.3) of Attachment E. The Bergen County Utilities Authority, Hampton Clarke Veritech, and Garden State Laboratories will provide appropriate containers for all analyses. Any deviations from the test procedures and/or preservation methods and holding times will be reported to the NJDEP Office of Quality Assurance and will be noted in the final report from the laboratory.

8. Schedule:*

Task	Date
Submit QAPP	January 2007
Conduct biweekly surface water sampling	May – October 2007
Conduct additional bacteriology sampling	June, July, August 2007
Conduct wet weather surface water sampling	May - October 2007
Conduct biological sampling	Early Summer or Late Summer 2007
Submit data and summary report to NJDEP	January 2008

* All scheduling is subject to the natural occurrence of appropriate stream flow conditions (i.e., non-flooding conditions).

9. Project Organization and Responsibility:

Laboratory Operations:	(Bergen CUA) (Hampton Clarke V.) (Garden State L.) (Rutgers EcoComplex) (Fairleigh Dickinson U.) (NJDEP Representative)	John Dinice Stanley E. Gilewicz Harvey Klein Lisa Galloway Evrard Marion McClary, Jr. Marc Ferko
Sampling Operations:	(QA Officer) (NJDEP Representative)	Lisa Galloway Evrard Marc Ferko
Data Processing/ Data Quality Review:	(QA Officer) (NJDEP Representative)	Lisa Galloway Evrard Beth Torpey Michele Bakacs
Overall QA:	(QA Officer)	Lisa Galloway Evrard
Overall Coordination:	(Project Officer)	Christopher C. Obropta

10. Organizational Chart:

Overall Coordination: Christopher C. Obropta (RCE WRP) Overall QA: Lisa Galloway Evrard (RCE WRP) Data Quality Review/Data Processing: Lisa Galloway Evrard (RCE WRP) Beth Torpey (NJDEP) Michele Bakacs (NJDEP) Sampling QC/Sampling Operations: Lisa Galloway Evrard (RCE WRP) Marc Ferko (NJDEP) Laboratory Operations: John Dinice (Bergen County Utilities Authority) Stanley E. Gilewicz (Hampton Clarke Veritech) Harvey Klein (Garden State Laboratories) Lisa Galloway Evrard (Rutgers EcoComplex) Marion McClary, Jr. (Fairleigh Dickinson University) Marc Ferko (NJDEP)

11. Sampling Procedures:

All sampling procedures will be in conformance with the NJDEP 2005 Field Sampling Procedures Manual, any applicable USEPA guidance, or with prior written approval.

- Bacteriology samples will be collected in accordance with the methods outlined in section 6.8.2.2.7 of the Field Sampling Procedures Manual (See Chapter 6D page 67 of 188).
- Manual composite sampling for wider portions of the streams will be conducted in accordance with the methods outlined in section 6.8.2.2.2 of the Field Sampling Procedures Manual (See Chapter 6D page 64 of 188).

• Grab sampling where the natural stream conditions make compositing unnecessary will be conducted in accordance with the methods outlined in section 6.8.2.2.3 of the Field Sampling Procedures Manual (See Chapter 6D – page 66 of 188).

In addition, instrumentation used for the collection of field data will be properly calibrated, in conformance with the manufacturer's instructions, laboratory SOPs and QA Manuals, and the NJDEP Field Sampling Procedures Manual.

12. Chain of Custody Procedures:

Chain of Custody procedures will be followed for all samples collected for this monitoring program. A sample chain of custody form is provided in Attachment F. A sample is in someone's "custody" if 1) it is in one's actual physical possession, 2) it is in one's view, after being in one's physical possession, 3) it is in one's physical possession and then locked up so that no one can tamper with it, and 4) it is kept in a secured area, restricted to authorized personnel only.

13. Calibration Procedures and Preventative Maintenance:

Calibration and preventative maintenance of laboratory and field equipment will be in accordance with the manufacturer's instructions, NJDEP Field Sampling Procedures Manual, NJAC 7:18 and 40 CFR Part 136.

14. Documentation, Data Reduction, and Reporting:

The QA Officer, for a minimum of five years, will keep all data on file, and all applicable data will be included in the summary report to NJDEP. An electronic version of all reports and data will be provided on a CD for the Department's use.

15. Quality Assurance and Quality Control:

NJAC 7:18 and 40 CFR Part 136 will be followed for all quality assurance and quality control (QA/QC) practices, including detection limits, quantitation limits, precision, and accuracy. Tables of parameter detection limits, quantitation limits, accuracy, and precision applicable to this study are provided in Attachment G. Bergen County Utilities Authority, Hampton Clarke Veritech, Garden State Laboratories, and Rutgers Cooperative Extension will perform data validation.

Lisa Galloway Evrard of the Rutgers Cooperative Extension Water Resources Program will verify the reference/voucher collection prepared by Marion McClary, Jr., Ph.D. (Associate Professor of Biological Sciences and Associate Director of Biological Sciences at Fairleigh Dickinson University).

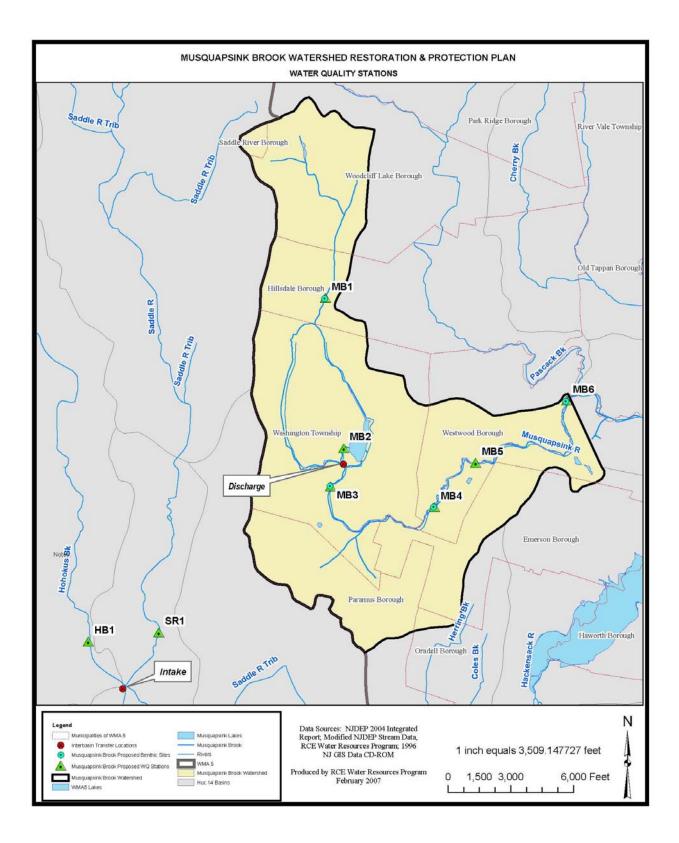
16. Performance and Systems Audits:

All NJDEP certified laboratories participate *annually in a NJDEP mandated Performance Testing program.* The NJDEP Office of Quality Assurance conducts a performance audit of each laboratory that is certified. The NJDEP Office of Quality Assurance also periodically conducts on-site technical systems audits of each certified laboratory. The findings of these audits, together with the *NJDEP mandated Performance Testing program*, are used to update each laboratory's certification status.

The NJDEP Office of Quality Assurance periodically conducts field audits of project sampling operations. The Office of Quality Assurance will be contacted during the project to schedule a possible field audit.

17. Corrective Action:

All NJDEP certified laboratories must have a written corrective action procedure which they adhere to in the event that calibration standards, performance evaluation results, blanks, duplicates, spikes, etc. are out of the acceptable range or control limits. If the acceptable results cannot be obtained for the above-mentioned QA/QC samples during any given day, sample analysis must be repeated for that day with the acceptable QA/QC results. NJDEP will be notified if there are any deviations from the approved work plan.


All signatories of this QAPP will be notified when deviations to the QAPP are made prior to their implementation.

18. Reports:

The summary report will include at a minimum an Introduction, Purpose and Scope, Results and Discussion, Conclusions and Recommendations, and an appendix with data tables. An electronic version of all reports and data will be provided on a CD for the Department's use.

ATTACHMENT A

Sampling Locations Musquapsink Brook Watershed

ATTACHMENT B

Biological Sampling Procedures and Analysis

Biological Sampling Procedures and Analysis

These sampling and data analysis procedures are in accordance with the Rapid Bioassessment Protocol procedures used by the NJDEP Bureau of Freshwater and Biological Monitoring, which is based on USEPA's *Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers* (EPA 841-B-99-02 Nov. 1999).

Sampling Procedures:

Samples will be collected using a multi-habitat sampling approach, concentrating on the most productive habitat of the stream (i.e., the riffle/run areas), plus coarse particulate organic matter (CPOM) or leaf litter. This sampling method minimizes habitat or substrate variation between sampling sites, and includes all likely functional feeding groups of macroinvertebrates in the stream. Three grab type samples will be collected at each sampling site. These samples will be sorted in the field, composited (i.e., the contents from the three grab samples from each site will be combined into a single container), and preserved in 80% ethanol for later subsampling, identification and enumeration.

A composite collection of a variety of CPOM forms (e.g., leaves, needles, twigs, bark, or fragments of these) will be collected. It is difficult to quantify the amount of CPOM to be collected in terms of weight or volume, given the variability of its composition. Collection of several handfuls of material is usually adequate, and the material is typically found in depositional areas, such as in pools and along snags and undercut banks. The CPOM sample will be processed using a U.S. Standard No. 30 sieve, and added to the composite of the grab samples for each site.

A 100-organism subsample of the benthic macroinvertebrate composite sample from each sampling site will be taken in the laboratory according to the methods outlined in the Rapid Bioassessment Protocol used by the NJDEP Bureau of Freshwater and Biological Monitoring. With the exception of chironomids and oligochaetes, benthic macroinvertebrates will be identified to genus. Chironomids will be identified to subfamily as a minimum, and oligochaetes will be identified to family as a minimum.

A habitat assessment will be conducted concurrent with the benthic macroinvertebrate sampling in accordance with the methods used by the NJDEP Bureau of Freshwater and Biological Monitoring. The measurement of physicochemical parameters will also be conducted concurrent with the benthic macroinvertebrate sampling. Surface water sampling for the measurement of pH, temperature, and dissolved oxygen will be conducted on a representative cross section of the steam. At least four subsurface grab samples will be collected across an established transect. These grab samples will be composited, and an appropriate volume will be transferred to sample bottles for *in situ* measurements of pH, temperature, and dissolved oxygen. Stream width, stream depth, and stream velocity will be measured in accordance with the methods outlined in Attachment C. Total dissolved solids (TDS) will also be measured as part of the biological sampling.

Biological Sampling Procedures and Analysis (continued)

Data Analysis:

The NJDEP Bureau of Freshwater and Biological Monitoring uses several community measures of biometrics adapted from the Rapid Bioassessment Protocols to evaluate the biological condition of sampling sites within the Ambient Biomonitoring Network in New Jersey. These community measures include taxa richness, EPT index, %EPT, %CDF, and Modified Family Biotic Index. This analysis integrates several community parameters into one easily comprehended evaluation of biological integrity referred to as the New Jersey Impairment Score (NJIS). The NJIS has been established for three categories of water quality bioassessment for New Jersey streams: non-impaired, moderately impaired, and severely impaired, and is based on comparisons with reference streams and a historical database consisting of 200 benthic macroinvertebrate samples collected from New Jersey streams.

If the above metrics are not utilized, or if different metrics or indices are used, these changes will be discussed with NJDEP for approval. For example, to determine the similarity among the sampling sites with respect to species composition, the Percentage Similarity Index may be calculated for all pair wise comparisons of the sampling sites. Also, the benthic macroinvertebrates may be separated into the four broad functional feeding groups to evaluate community structure. In addition, the Shannon diversity index may be calculated to evaluate community structure. In addition, the findings from the habitat assessment will be used to interpret survey results and identify obvious constraints on the attainable biological potential of the site.

The final report will include a characterization of the aquatic biota, in particular the benthic macroinvertebrate community.

ATTACHMENT C

Stream Flow Measurement Procedure

Stream Flow Measurement Procedure

Stream width, depth, velocity, and flow determinations will be made in conformance with the following procedures:

- 1. A measuring tape is extended across the stream, from bank to bank, perpendicular to flow. Meter calibration is checked.
- 2. Using a Marsh-McBirney, Inc. Model 2000 Flo-Mate Portable Water Flow meter, velocity and depth measurements are made at points along the tape. Normally depth is measured using a rod calibrated in tenths of a foot. In shallow streams, a yardstick may be used to measure depth. Velocities are measured at approximately 0.6 depth (from the surface) where depths are less than 2.5 feet and at 0.2 and 0.8 depth (from the surface) in areas where the depth exceeds 2.5 feet.
- 3. The stream cross section is divided into segments with depth and velocity measurements made at equal intervals along the cross section. The number of measurements will vary with site conditions and uniformity of stream cross section. Each cross section is divided into equal parts depending upon the total width and uniformity of the section. At a minimum, velocities are taken at quarter points for very narrow sections. In general, velocity and depth measurements are taken every one to five feet. A minimum of ten velocity locations is used whenever possible. The velocity is determined by direct readout from the Marsh-McBirney meter set for 5 second velocity averaging.
- 4. Using the field data collected, total flow, average velocity, and average depth can be computed. Individual partial cross-sectional areas are computed for each depth and velocity measurement. The mean velocity of flow in each partial area is computed and multiplied by the partial cross-sectional area to produce an incremental flow. Incremental flows are summed to calculate the total flow. The average velocity for the stream can be computed by dividing the total flow by the sum of the partial cross-sectional areas. The average depth for the stream can be computed by dividing the sum of the partial cross-sectional areas by the total width of the stream. The accuracy of this method depends upon a number of factors, which include the uniformity of the steam bottom, total width, and the uniformity of the velocity profile.
 - Flow measurements will be collected for all sampling events. However, in accordance with the Field Sampling Procedures Manual (See Section 6.8.1.1, Chapter 6D page 59 of 188), field personnel will not wade into flowing water when the product of depth (in feet) and velocity (in feet per second) equals ten or greater. All scheduling is subject to the natural occurrence of appropriate stream flow conditions (i.e., non-flooding conditions) to ensure the health and safety of all field personnel. If the stream flow conditions preclude entry into the stream, flow will have to be estimated or calculated based on the recorded flow at the closest USGS gaging station and the drainage area.

ATTACHMENT D

Table 1A – List of Approved Biological Methods & Table 1B – List of Approved Inorganic Test Procedures 40 CFR Part 136.3 July 1, 2005

	Other					Colliert @ 13.17	COller-186 - a a a	mColiBue 24 18		Enterolent ^{443,23}		
	NSGS	B-0050- 855	3	B-0025- 855								
SO	AOAC					991.1511		3200 G	828			
CAL METHO	ASTM						D5392-9310			D6503-9910 D5259-9210		
TABLE IA-LIST OF APPROVED BIOLOGICAL METHODS	Standard methods 18th, 19th, 20th Ed.	9221C E 4 9222D 4	9221C E 4 9222D 4	922184	9221B4 9223(B4B 5c)4	9221B.1/9221F 4.12.14 9223B 4.13	9222B/92226 4.19 9213D 4	9230B4, 9230C4	923084	9230C ⁴		
A-LIST 0	EPA	p. 132 ³ p. 124 ³	p. 132 ³ p. 124 ³	p. 114 ³ p. 108 ³	p. 1143 p. 1113	ŝ.	103.120 1603.23 1604.22	p. 1393	p. 130	1106.124 160025 p. 143 ³	1622.26 1623.27 1623.27	2002.029
TABLE	Method ¹	Coliform (fecal), num- Most Probable Number (MPN), 5 Decreter 100 mL, <u>Nume 3 dataset or</u> Membrane filter (MF)2, single	MPN, 5 tube, 3 dilution, or MF, single step ⁶	MPN, 5 tube, 3 dilution, or MF ² , single step or two step	MPN, 5 tube, 3 dilution, or MF2 with enrichment	MPN 7.9.15, multiple tube, multiple tube/multiple well,	MF 2.87.8.9 two step, or single step	MPN, 5 tube, 3 dilution.	MF *, or Plate count MPN 7.9 multiple tube	multiple tube/multiple well MF 2.8.7.8.9 two step single step, or Plate count.	Filtration/MS/FA Filtration/MS/FA	Certodaphnia dubia acute
	Parameter and units	Bacteria 1. Coliform (facel). num- ber per 100 mL		 Coliform (total), num- ber per 100 mL. 	 Coliform (total), in presence of chlorine, number per 100 mL. 	5. E. coli, number per 100 mL28.		 Fecal streptococci, number per 100 mL. 	 Enterococci, number per 100 mL. 	Drohovoa	8. Cryptosporialum ²⁸ 9. Geordia ²⁸ Ametic Tonicity	10. Toxicity, acute, fresh vater organisms, LC50, percent effluent

7

Environmental Protection Agency

§136.3

Entrioninal Protection Ageney	Environmental	Protection	Agency
-------------------------------	---------------	------------	--------

<page-header>1 Can service in the international properties of the inter The method must be specified when results are reported.
The method must be specified when results are reported.
2.0.045 µm membrane filer (MF) or other pore size certified by the manufacturer to fully retain organisms to be outlivated and to be free of extractables which could interface with their Sea urchin, Arbacia punctulata, 1008.0³¹ fertilization.

9

§ 136.3

			Ref	Reference (method number or page)	(e)	
	Parameter, units and method	EPA1.35	Standard Methods [Edi- tion(s)]	ASTM	USGS2	Other
	1. Acidity, as CaCOs, mg/L. Electrometric endpoint or phonolophithalin portholid	305.1	2310 B(4a) [18th, 19th, 20th-1	D1067-92	I-1020-85	
			1007		I-2030-85	
	 Alkalinity, as cacus, mgal. Electrometric of Colorimetric Historics to put 4.6 monutor 	310.1	2320 B [18th, 19th, 20th]	D1067-92	I-1030-85	973.433
	or automatic. 3. Aluminium—Total, ⁴ mg/L; Diges-	310.2.			1-2030-85	
	tion ⁴ followed by. AA direct aspiration ³⁶	202.1	3111 D [18th, 19th]		1-3051-85	
10	An turnace Inductively Coupled Plasma/ Atomic Emission Snac-	200.75	3120 B [18th, 19th, 20th]		I-4471-9750	
	trometry (ICP/AES) 36. Direct Current Plasma			D4190-94		Note 34.
	Colonimetric (Enochrome		3500-AI B [20th] and 3500-AI D [18th, 19th].			
	Ammonia (as N), mg/L: Manual, distillation (at pH)	350.2	4500-NH3 B [18th, 19th,			973.493
	Nesslerization	350.2 350.2	4500-NH3 C [18th] 4500-NH3 C [18th] 4500-NH3 C [19th, 20th]	D1426-98(A)	1-3520-85	973.493
	Electrode	350.3	and 4500–NH ₅ E [18th] 4500–NH ₅ D or E [19th, 20th] and 4500–NH ₅ F or	D1426-98(B).		
	Automated phenate, or	350.1	G [18th] 4500–NH ₃ G [19th, 20th] and 4500–NH ₅ H [18th].		1-4523-85	
	Automated electrode 5. Antimony-Total, ⁴ mg/L; Digestion ⁴					Note 7.
	Ad direct aspiration ³⁸	204.1 204.2 200.75	3111 B [18th, 19th] 3113 B [18th, 19th] 3100 B [18th, 19th]0th1			

²⁸ USEPA. October 2002, Methods for Measuring the Acute Toxicity of Effuents and Receiving Waters to Freshwater and Martine Organisms. Firth Edition. U.S. Environmental Protection Agency. Office of Water Washington DC: EPA3251, E-2001 20. USEPA, october 2002, Shorel-arm Mathods for Estimating the Chronic Toxicity of Effuents and Receiving Waters to Freshwater Organisms. Fourth Edition. U.S. Environmental Protec-tion Agency. Office of Water Washington DC: EPA3251, E-2020.

§136.3

40 CFR Ch. I (7-1-05 Edition)

		Ref	Reference (method number or page)	(eć	
Parameter, units and method	EPA1,35	Standard Methods [Edi- tion(s)]	ASTM	US6S2	Other
Ttrimetric (EDTA), or Ca plus Mg as their carbon- ates, by inductively ou- pled plasma or AA direct aspiration (See Param-	130.2	. 2340 B or C [18th, 19th, 20th]	D1126-86(92)	I-1338-95	973.5283
28. Hydrogen Ion (pH), pH units Electrometric measurement, Automated electrode	150.1	4500-H* B [18th, 18th, 20th]	D1293-84 (90)(A or B)	H-1586-85	973.41 ³ Note 21.
rect aspiration or mace al.4 mg/L; Digestion4	235.1 235.2	3111 B [18th, 19th]			
hollowed by AA direct aspiration * AA furnace AA furnace CPARES * DOCP* or Colorimetric (Phenan- Colorimetric (Phenan- tronier) (as Nr	236.1 236.2 200.7 <i>5</i>	3111 B or C [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th, 20th] 3100 F [18th, 19th, 20th] 3500-Fe B [20th] and 3500-Fe D [18th, 19th].	D1068-96(A or B) D1068-96(C) D1068-96(D) D1068-96(D)	-3381-85 -4471-97%	974.273 Note 34. Note 22.
mg.4: Digestion and distillation fol- Lowed by Nessentration Electrode	5613 3513 3513	4500-Nwg B or C and 4500-NH5 B (18th, 19th, 20th) 4500-NH5 C (18th, 20th) 4500-NH5 C (18th, 20th) and 4500-NH5 C (19th, 20th)	D3590-89(A) D3590-89(A) D3590-89(A)		973,483
d phenate colorimetric omated block digestor col- ic. or block digestor potentio-	351.1 351.2 351.4		D3590-89(B) D3590-89(A)	1-4551-788 1-4515-9145	
metric. Block digester, followed by Auto dis- tillation and Titration, or. Nessienzation, or					Note 39. Note 40.
Flow injection gas diffusion	220.1		102E0 05/0 ac 01	1.3300.05	Note 41, 074 073

§136.3

40 CFR Ch. I (7-1-05 Edition)

Note 34.	974.273 Note 34.	974.273 Note 34 920.2033 Note 23	977.223	Note 34.	Nole 34. 973.50,ª 4190,17 p. 28 ⁹		
1-4403-8951 1-4471-9750	347-85 44718750	I-3454-85 I-4471-9750	1-3462-85	-3490-85 -3492-85 <i>#</i> -4471-9780	1–3439–85. 1–4503–89 ⁵¹ 1–4471–97 so.		
D3559-96(D) D4190-94 D3559-96(C)	D511-33(B)	D858-96(A or B) D858-85(C) D4190-94	D3223-91		D188690(A or B) D188690(C) D4190-94	D3867-99(B).	
3113 B [18th, 19th]	3111 B (18th, 18th) 3120 B [18th, 19th, 20th] 3500-Mg D [18th, 19th]	3111 B [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th, 20th] 3500-Mn B [20th] and 3500-Mn D [18th, 19th]	3112 B [18th, 19th]	3111 D [18th, 19th] 3115 B [18th, 19th] 3120 B [18th, 19th, 20th]	3111 B or C [18th, 19th] 3113 B [18th, 18th] 3120 B [18th, 19th, 20th] 3500-Ni D [17th]	4500-NO ₅ -E [18th, 19th, 20th]	
239.2 200.75	242.1 200.75	243.1 243.2 200.75	245.1 245.2 1631E 43	246.1 246.2 200.75	249.1 249.2 200.75 352.1	353.3	Π
AA furnace ICPARES 38 DCP38 Vottametry 1 or Colorimetric (Dthrizone)	33. Magnesum-Trotal, mgL, Di- gestion 4 biowed by. Di- pestion 4 biowed by. Di- perior 2004 of direct aspiration DCP of Stavimetro 34. Manganese-Total, mgL, Dges-	bon' followed by A A furned aspiration ³⁶ A furnede DCP4E3 DCP36, or Colorimetric (Persulfale), or (Periodale)	35. Mercury—T dtal / mg/L. 2.6(J vapor), manual or Automated Oxidation, purge and trap. orisoance spectrometry, orisoance spectrometry.	 Motodenum—Total 4, mg/t, Di- gestion 4 followed by Ad order aspiration AA furnese DicpAkeS DicpAkeS Nickei—Total 4, mg/t, Digeston 4 	followed by: AA functed spiration ³⁸ AA functes ³⁸ CP/MES ³⁸ CP/MES ³⁸ COCH COCH COCH COCH COCH COCH COCH COC	ravery of the National State of the Array of	Nitrate: EPA 300.0; Ion Chromatography

Environmental Protection Agency

§136.3

	TABLE IB-LIST O	F APPROVED INORGANIC	TABLE IB-LIST OF APPROVED INORGANIC TEST PROCEDURES-CONTINUED	Continued	
Doromotor units and		Refi	Reference (method number or page)	e)	
method	EPA1.35	Standard Methods [Edi- tion(s)]	ASTM	USGS2	Other
Automated, or Automated hydrazine	353.2	4500-NO ₃ -F [18th, 19th, 20th] 4500-NO ₃ -H [18th, 19th, 20th]	D3867-99(A)	I-4545-85.	
Spectroprovomeanc. Manual or Automated (Diazotzation) 41 Oil and crease-Total recover-	354.1	4500-NO2-B [18th, 19th, 20th]		1-4540-85.	Note 25.
	413.1 1664A ta	5520B (18th, 19th, 20th) ³⁸ , 5520B (18th, 19th, 20th) ³⁸ ,			
traction and gravimetry. Silica gel treated HEM (SGT-HEM) silica gel treatment and gravimetry. 42. Organic carbon—Total (TOC).	1664A 42,				
mg/L.: Combustion or oxidation 415.1	415.1	5310 B, C, or D [18th, 19th, D2579-93 (A or B) 20th]	D2579-93 (A or B)		973,47,3 p. 14.24
 Organic nitrogen (as N), mg/L: Total Kjeldahi N (Parameter 31) minus ammonia N (Parameter 4) Orthophosphate (as P), mg/L 		Ta a caracterization of the second			
or or reage	365.1 365.2 365.3.	4500-P F [18th, 19th, 20th] 4500-P E [18th, 19th, 20th]	D515-88(A)	I-4601-85	973.56 ³ 973.55 ³
tion ⁴ followed by: AA direct aspiration, or AA furnace	252.1 252.2.	3111 D [18th, 19th].			
CB: Cxyger, dis solved, mg/L->	360.2	45000 C (18th, 18th, 20th) [D88892(A) 45000 G (18th, 18th, 1 20th] [D88892(B)	D888-92(A) D888-92(B)	L-1575-788 L-1576-788	973.45B3
Nitrite: EPA 300.0, Ion Chromatography					

16

§136.3

40 CFR Ch. I (7-1-05 Edition)

p. S2710 p. S2810 Note 34.	Note 27.	Note 27.	Note 28	973.553	973.563			Note 34	973.533	317 B ¹⁷						
					1-4600-85	I-4610-9148			I-3630-85		I-3750-85.	I-1750-85.	I-3765-85.		I-3753-85.	
					D515-88(A)	D515-88(B)										
3111 B (18th, 19th)				4500-P B, 5 [18th, 19th,	20th] 4600-P E [18th, 19th, 20th] 4500-P F [18th, 19th, 20th]		3111 B (18th, 19th)		3111 B [18th, 19th] 3120 B [18th, 19th, 20th]. 3500-K B [20th] and 3500- K D (18th, 10th]	n o lioni, tatij.	2540 B [18th, 19th, 20th]	2540 C [18th, 19th, 20th]	2540 D [18th, 19th, 20th]	2540 F [18th, 19th, 20th].		3111 B [18th, 19th]
263.1 253.2	420.1	420.1	420.2.	365.2	365.3 or 365.3	365.4	256.1 256.2		258.1 200.7s		160.3	(160.1	(10.2	160.5	160.4	
47. Palladum—Total 4 mg.d. Diges- tion 4 followed by: AA direct aspiration, or AA furnace DCP	40. FIRMUS, IIIgu. Manual distillation 26 Enlowed hv	Colorimetric (4AAP) manual.	Automated ¹⁹ Automated ¹⁹ 49. Phosphorus (elemental), mg/L	50. Phosphorus-Total, mgA.: Persultate digestion tol-	Manuel or Automated ascorbic acid re-	ouction. Semi-automated block dicestor	51. Platinum—Total 4 mg/L. Diges- tion 4 followed by: AA furnace	52. Potassium-Total, ⁴ mg/L. Diges-	tion ⁴ followed by: AA direct aspiration ICP/AES Flame photometric, or	Colorimetric	53. Kestdue—I otal, mg/L. Gravimetric 103-105°	Consideration 1800	mg/L: Gravimetric, 103-105° post washing of residue	56. Kesidue—serireable, mg/L: Volumetric, (Imhoff cone), or gravimetric.	57. Residue—Volatile, mg/L: Gravimetric, 550° 58. Rhodium-Total,4 mg/L, Diges-	tion ⁴ followed by: AA direct aspiration, or 265.1
							17						\cup			

Environmental Protection Agency

§136.3

	Note 32.		Note 34.		Note 34.	974.27,3 p. 379	Note 33.	(EMSL-CI), EPA-600/4-79-020, Nater-Resource Investigations of
		I-3850-78ª		.ca-0035-1	1-4471-9750	-3900-85 -4471-9750		ms Laboratory-Cincinnati he Intenor, Techniques of V
D2330-66.				U185354(A)	D3373-93. D4190-94	D1691-95(A or B)	D4190-94	vironmental Monitoring Syster nents. 'U.S. Department of th
4500-5-20 (18th, 19th, 20th) 4500-503-3E (18th, 18th, 20th) 5540 C (18th, 19th, 20th)	2550 B (19th, 19th, 20th) 3111 B (19th, 19th) 3120 B (19th, 19th, 20th)	3111 B [18th, 19th] 3113 B [18th, 19th] 3111 D [18th, 19th].		2130 B [18th, 19th] 3111 D [18th, 19th].	3120 B [18th, 19th, 20th] 3500-V B [20th] and 3500- V D [18th, 19th]	3111 B or C [18th, 19th] 3120 B [18th, 19th, 20th]	3500-Zn E [18th, 19th]. 3500-Zn B [20th] and 3500-Zn F [18th, 19th].	mental Protection Agency, Err ces in Water and Fluvial Sedir
376.2	170.1 279.1 200.75	282.1 282.2 200.75, 283.1	283.2.	286.1	286.2 200.75	289.1 289.2. 200.75		Water and Wastes," Environ applicable. Analysis of Inorganic Substan
Continuation (methylene) 376.2 blue) 67. Suttle (as SO ₃) mg/L. Titmmetho (odne-lockle)		A direct aspiration A tunece, or ICP/AES for for blowed by A direct aspiration	AA fumace DCP 73. Turbidity. NTU:	74. Vanadium-Total, ⁴ mg/L; Diges- tion ⁴ followed by: AA direct aspiration	AA furnace ICP/AES DCP, or Colorimetric (Gallic Acid)	75. Zinc—Total,4 mg/L; Digestion4 followed by: AA functee ICP/AES®	DCP, ³⁶ or Colorimetric (Dithizone) or (Zincon)	Table 1B Notes: * Methods for Chemical Analysis of Water and Wastes." Environmental Protection Agency, Environmental Monitoring Systems Laboratory—Cincinneti (EMSL-CI), EPA-6004-79-020. Revised Match 1983 and 1979 Winter applicable. Pfstimma M.J., et al. "Mathods for Analysis of Incoranic Substances in Water and Fluvial Sediments. 'U.S. Department of the Interior. Techniques of Water-Resource Investorations of

Environmental Protection Agency

§136.3

19

§ 136.3

20

40 CFR Ch. I (7-1-05 Edition)

Environmental Protection Agency

Environmental hadrener benefactor and the presentation benefactor benefactor and the presentation of th

21

SQ
OMPOUL
8
ORGANIC
PESTICIDE
NON
FOR
JRES
PROCEDURES FOR I
TEST
APPROVED T
Ч
LIST
5
TABLE

	ш	EPA method number 3.7	17		Other approved methods	
Parameter 1	GC	GC/MS	HPLC	Standard Methods [Edition(s)]	ASTM	Other
1. Acenaphthene	610	625, 16258	610	6440 B [18th, 19th,	D4657-92	Note 9, p.27.
2. Acenaphthylene		625, 16258	610	6440 B, 6410 B (18th,	D4657-92	Note 9, p.27.
3. Acrolein	603	6244, 16248		ໃນທີ່ ບອບ		
4. Acrylontnie 5. Anthracene	603	6244, 1624B 625 1625B	610	6410 B 6440 B 118th	D4657-92	Note 9 p 27
		The second		19th 20th1	-	

§ 136.3

ATTACHMENT E

Table II - Required Containers, Preservation Techniques, and Holding Times40 CFR Part 136.3July 1, 2005

3544. Available from the American Society for Microbiology, 1752 N Street NW., Washington, DC 20036. Table IA, Note 22.

(58) USEPA. 2002. Method 1604: Total Coliforms and Escherichia coli (E. coli) in Water by Membrane Filtration using a Simultaneous Detection Technique (MI Medium). U.S. Environmental Protection Agency, Office of Water, Washington D.C. September 2002, EPA 821-R-02-024. Available from NTIS, PB2003-100129. Table IA, Note 22.

(59) USEPA. 2002. Method 1600: Enterococci in Water by Membrane Filtration using membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEl). U.S. Environmental Protection Agency, Office of Water, Washington D.C. September 2002, EPA-821-R-02-022. Available from NTIS, PB2003-100127. Table IA, Note 25.

(60) USEPA. 2001. Method 1622: Cryptosporidium in Water by Filtration/ IMS/FA. U.S. Environmental Protection Agency, Office of Water, Washington, DC April 2001, EPA-821-R-01-026.

Available from NTIS, PB2002-108709. Table IA, Note 26. (61) USEPA. 2001. Method 1623:

(61) USEPA. 2001. Method 1623: Cryptosporidium and Giardia in Water by Filtration/IMS/FA. U.S. Environmental Protection Agency, Office of Water, Washington, DC April 2001, EPA-821-R-01-025. Available from NTIS, PB2002-106710. Table IA, Note 27. (62) AOAC. 1995. Official Methods of Analysis of AOAC International, 16th Edition, Volume I, Chapter 17. AOAC International. 481 North Frederick Avenue, Suite 500, Gaithersburg, Maryland 20877-2417. Table IA, Note 11.

(c) Under certain circumstances the Regional Administrator or the Director in the Region or State where the discharge will occur may determine for a particular discharge that additional 40 CFR Ch. I (7-1-05 Edition)

parameters or pollutants must be reported. Under such circumstances, additional test procedures for analysis of pollutants may be specified by the Regional Administrator, or the Director upon the recommendation of the Director of the Environmental Monitoring Systems Laboratory—Cincinnati.

(d) Under certain circumstances, the Administrator may approve, upon recommendation by the Director, Environmental Monitoring Systems Laboratory—Cincinnati, additional alternate test procedures for nationwide use.

(e) Sample preservation procedures, container materials, and maximum allowable holding times for parameters cited in Tables IA, IB, IC, ID, and IE are prescribed in Table II. Any person may apply for a variance from the prescribed preservation techniques, container materials, and maximum hold-ing times applicable to samples taken from a specific discharge. Applications for variances may be made by letters to the Regional Administrator in the Region in which the discharge will occur. Sufficient data should be provided to assure such variance does not adversely affect the integrity of the sample. Such data will be forwarded, by the Regional Administrator, to the Director of the Environmental Monitoring Systems Laboratory-Cincinnati, Ohio for technical review and recommendations for action on the variance application. Upon receipt of the recommendations from the Director of the Environmental Monitoring Systems Laboratory, the Regional Administrator may grant a variance applicable to the specific charge to the applicant. A decision to approve or deny a variance will be made within 90 days of receipt of the application by the Regional Administrator.

TABLE II-REQUIRED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES

Parameter No /name	Container ¹	Preservation 2, 3	Maximum holding time 4
Table IA—Bacteria Tests: 1–5 Coliform, total fecal, and E. coli	PP)6	Cool, <10 °C, 0.0008% Na ₂ S ₂ O ₃ 5.	6 hours.
6 Fecal streptococci 7 Enterococci Table IA-Protozoa Tests:		Cool, <10° 0.0008% Na ₂ S ₂ O ₃ ⁵ Cool, <10° 0.0008% Na ₂ S ₂ O ₃ ⁵	6 hours. 6 hours.
		0-8 °C 0-8 °C	96 hours 17 96 hours 17
Table IA—Aquatic Toxicity Tests: 6-10 Toxicity, acute and chronic	P,G	Cool, 4 °C 16	36 hours.

Environmental Protection Agency

§136.3

TABLE II-REQUIRED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES-Continued

Parameter No /name	Container1	Preservation 2.3	Maximum holding time
able IB—Inorganic Tests:	l		1
1. Acidity	P.G	Cool, 4ºC	14 days.
2. Alkalinity	P. G	do	Do.
Ammonia	DG	Cool, 4°C, H2SO4 to pH<2	28 days.
9. Biochemical oxygen demand	₽ ^G	Cool, 4°C, 112004 to pir 2	48 hours
10. Boron	P, PFTE, or	HNO3 TO pH<2	6 months.
10. B0I 011	Quartz.	HNO3 TO PHS2	o monuis.
A A Record And		A formation of the second s	
11. Bromide	P. G	None required	28 days.
14. Biochemical oxygen demand, carbonaceous		Cool, 4°C	48 hours.
15. Chemical oxygen demand	P. G	Cool, 4ºC, H2SO4 to pH<2	28 days.
16. Chloride	P. G	None required	Do.
17. Chlorine, total residual	P. G	do Cool, 4°C	Analyze immediately.
21. Color	P. G	Cool, 4°C	48 hours.
23-24. Cyanide, total and amenable to	P, G	Cool, 4°C, NaOH to pH>12,	14 days.6
chlorination.	10	0.6g ascorbic acid 5.	<u></u>
25. Fluoride	P	None required	28 days.
	P. G	HNO ₃ to pH<2, H ₂ SO ₄ to pH<2	6 months
27. Hardness	P.G	HINO3 10 pH<2, H2OO4 10 pH<2	Analyze immediately
28-ydrogen ion (pH)	P. G	None required	
31, 43. Kjeldahl and organic nitrogen	P, G	Cool, 4°C, H2SO4 to pH<2	28 days.
fetals?			
18. Chromium VI7	P, G	Cool, 4 °C	24 hours.
35. Mercury 17	P. G	HNO ₃ to pH<2	28 days.
3, 5-8, 12, 13, 19, 20, 22, 26, 29, 30, 32-34,	P. G	do	6 months.
36, 37, 45, 47, 51, 52, 58-60, 62, 63, 70-72,			
74, 75. Metals except boron, chromium VI			
and mercury7.			
	0	0.1 100	10
38 Dtrate	(P)6	Cool, 4°C	48 hours.
39 Nitrate-nitrite	P. G	Cool, 4ºC, H2SO4 to pH<2	28 days.
40 Nitrite	@G	Cool, 4ºC	48 hours.
41. Oil and grease	Ğ	Cool to 4°C, HCl or H2SO4 to	28 days.
		pH<2.	
42. Organic Carbon	P. G	Cool to 4 °C HC1 or H2SO4 or	28 days.
	The bar monthered	HyPO4, to pH<2.	20 00,0.
(44)Orthophosphate	®G.	Filter immediately, Cool, 4°C	48 bours
	U		
(45) Oxygen, Dissolved Probe	G Bottle and	None required	Analyze immediately.
	top.	100 00 00 0 0 0 V	
47. Winkler	do	Fix on site and store in dark	8 hours.
48. Phenols	G only	Cool, 4°C, H2SO4 to pH<2	28 days.
49 Phosphorus (elemental)	G	Cool. 4°C	48 hours
50. Phosphorus, total	PG	Cool, 4ºC, H2SO4 to pH<2	28 days.
53. Residue, total	E G	Cool, 4°C	7 days.
54 Residue, Filterable	Ö.	do	7 days.
55. Residue, Nonfilterable (TSS)	P.G	do	7 days.
56. Residue, Settleable	P. G	do	48 hours.
57. Residue, volatile	P. G		7 days.
61. Silica	P, PFTE, or	Cool. 4 °C	28 days.
	Quartz.	Access of the indigital condition	Contraction and the second sec
64. Specific conductance	P. G	do	Do.
65. Sulfate	P.G	do	Do.
66. Sulfide	P.G		
66. Suinde	P, G	Cool, 4°C add zinc acetate	7 days.
		plus sodium hydroxide to	
	1000 B	pH>9.	10 10 to because
67. Sulfite	P. G	None required	Analyze immediately.
68. Surfactants	P.G	Cool. 4°C	48 hours.
69)Temperature	P. G		Analyze.
73. Turbidity	P.G	Cool. 4°C	48 hours.
able IC-Organic Tests [®]	A 9 Manual and		45 Hours.
	0. 7. 6.	0.1 4 00 0 0000 11. 0 0 5	14 days.
13, 18-20, 22, 24-28, 34-37, 39-43, 45-47,	G, Teflon-	Cool, 4 °C, 0.008% Na2S2O35.	14 days.
56, 76, 104, 105, 108-111, 113. Purgeable	lined sep-		
Halocarbons.	tum.		
6, 57, 106. Purgeable aromatic hydrocarbons	do	Cool, 4 °C, 0.008% Na2S2O3.5	Do.
		HCI to pH29.	
3, 4. Acrolein and acrylonitrile	do	Cool, 4 °C, 0.008% Na2S2O3,5	Do.
o, - constent and ad youtuble		adjust pH to 4-510	00.
00 00 44 40 50 77 00 04 00 400 440	C. Tolan		7 days well asher them
23, 30, 44, 49, 53, 77, 80, 81, 98, 100, 112.	G. Teflon-	Cool, 4 °C, 0.008% Na2S2O35	7 days until extraction;
Phenols ¹¹ .	lined cap		40 days after extrac-
			tion.
7. 38. Benzidines ¹¹	do	do	7 days until extraction.3
14, 17, 48, 50-52. Phthalate esters 11			7 days until extraction:
	ANY WARKS ANY ANY ANY ANY	A DECISION OF THE PROPERTY OF	40 days after extrac-

§ 136.3

40 CFR Ch. I (7-1-05 Edition)

TABLE II-REQUIRED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES-Continued

Parameter No /name	Container1	Preservation 2,3	Maximum holding time*
82-84. Nitrosamines 11 14	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ , ⁶ store in dark	Do.
88-94 PCBs ¹¹	do	Cool, 4 °C	Do.
54, 55, 75, 79. Nitroaromatics and isophorone ¹¹ .	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ , ⁵ store in dark.	Do.
1, 2, 5, 8–12, 32, 33, 58, 59, 74, 78, 99, 101. Polynuclear aromatic hydrocarbons ¹¹ .	do	do	Do.
15, 16, 21, 31, 87 Haloethers ¹¹	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ 5	Do.
 29, 35–37, 63–65, 73, 107. Chloninated hydro- carbons¹¹ 60–62, 66–72, 85, 86, 95–97, 102, 103. CDDs/ CDFs¹¹ 	do	Cool, 4 °C	Do.
aqueous: field and lab preservation	G	Cool, 0-4 °C, pH<9, 0.008% Na ₂ S ₂ O ₃ 5.	1 year.
Solids, mixed phase, and tissue: field preserva- tion.	do	Cool, <4 °C	7 days.
Solids, mixed phase, and tissue lab preserva- tion.	do	Freeze, < 10 °C	1 year.
able ID-Pesticides Tests:			
1-70. Pesticides 11	do	Cool, 4ºC, pH 5-915	Do:
able IE-Radiological Tests:		- version of the second s	
1-5. Alpha, beta and radium	P. G	HNO ₃ to pH<2	6 months.

 Table III—Radiological Tests:
 P, G
 HNO3 to pH<2</th>
 6 months.

 Table II Notes
 P, G
 HNO3 to pH<2</td>
 6 months.

 "Table II Notes
 Polyethylene (P) or glass (G). For microbiology, plastic sample containers must be made of sterilizable materials (poly-provision or other autoclass)
 3 sample preservation should be performed immediately upon sample collection. For composite chemical samples ceach aliquot should be preserved by maintaining at 4°C unbil compositing and sample splitting is completed.

 3 When any sample is to be shoped by common camer or sent through the United States Mais, it must comply with the Department of Transportation Hazardous Materials Regulations (48 CFR part 172). The person offering such material for transportation is responsible for ensuming such compliance. Pro the preservation requirements of Table II, the Office of Hazardous Materials Regulations (48 CFR part 172). The person offering such material for transportation is responsible for an ensuming such compliance. Pro the preservation requirements of Table II, the Office of Hazardous Materials Regulations (48 CFR part 172). The person offering such material for transportation is concentrations of 0.0496 by weight or less (ph about 180 or greater). Name and the Hore office of Hazardous Materials Regulations of polytophic procession of the samples regulation (12.0 or less).

 Samples should be analyzed as soon as possible after collection. The times listed are the maximum times that samples may be held be longer periods only if the permittee, or monitoring 18.05% by weight or less (ph about 180 or less).
 Samples should be analyzed as soon as possible tare collection. The times listed are the permittee, or monitoring 18.05% by the safet and the the songlet ru

in footnote 5 (re the requirement for microuniate resource) of resource to the sample to 4.0±0.2 to prevent rearrangement to benzi-12 if 1.2-diphenylhydrazine is likely to be present, adjust the pH of the sample to 4.0±0.2 to prevent rearrangement to benzi-

¹³ Extracts may be stored up to 7 days before analysis if storage is conducted under an inert (oxidant-free) atmosphere
 ¹³ Extracts may be stored up to 7 days before analysis if storage is conducted under an inert (oxidant-free) atmosphere
 ¹⁴ For the analysis of diphenylnitrosamine, add 0.008% Na₂S₂O₃ and adjust pH to 7–10 with NaOH within 24 hours of sam-

If you have analysis of dipherryInitrosamine, add 0.009% NajSjOs and adjust pH to 7–10 with NaOH within 24 hours of sam-ping. ¹³ The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are extracted within ¹⁴ The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are extracted within ¹⁵ The pH adjustment may be parader with the samples in the shipping container to ensure that (ice is still present when the samples ¹⁶ sufficient ice should be placed with the samples in the shipping container to ensure that (ice is still present when the samples arrive at the laboratory. However, even if ice is present when the samples arrive, it is necessary to immediately measure the temperature of the setthese the contain the that Clemperature maximum has not been exceeded. In the isolated cases arrive at the laboratory. However, even if ice is present when the samples arrive, it is necessary to immediately measure the temperature of the setthese the contain the that Clemperature maximum has not been exceeded. In the isolated cases arrive at the laboratory. However, even if ice is present when the samples have a sammer that the temperature of the setting the setting of the setting the setting of the setting the setting the setting the samples collected for the determination of trace level interview (100 npt), using EPA Method 1631 must be collected in tight-by capped turopolymer or jalas bottles and preserved with ErCl or HCl solution within 48 hours of sample collected. The time to preservation may be excluded to 28 days if a sample is oxidized in the sample bottle. Samples collected for dissolved trace level increase should be fil-tered in a designated clean area in the field in accordance with procedures given in Method 1669. Samples that have been col-lected for determination of total or dissolved trace level mercury must be analyzed within 90 days of sample collecton.

36

ATTACHMENT F

Sample Chain of Custody Form

ORDER ID:

CHAIN OF CUSTODY RECORD

			nit / Site umber	S	Sampler's Initials	Received	Date/Time
		dy until	W	ork Or	der Comments:		
_	Preservation	pН	pH	Check			
Sample Type	Analysis				Received by: (Initial)	Date	Time
Date/Time:	6	End	Collec	Date/	Time:		
s:							
) SIGNATUR Sample Type Date/Time:	SIGNATURE: Preservation Sample Type Analysis Date/Time:	mples below have not been out of our custody until) SIGNATURE: Sample Type Analysis Date/Time: End	Number mples below have not been out of our custody until) SIGNATURE: Preservation Sample Type Analysis BCUA Type Date/Time:	Number mples below have not been out of our custody until) SIGNATURE: Preservation PH Sample Type Analysis BCUA Bottle Type Date/Time:	Number mples below have not been out of our custody until Work Order Comments:) SIGNATURE: Preservation pH pH Check Sample Analysis BCUA Bottle Received by: (Initial) Type Analysis End Collect Date/Time:	Number mples below have not been out of our custody until SIGNATURE: Preservation PH Sample Type Analysis BCUA Bottle Type Analysis BCUA Bottle Type Analysis End Collect Date/Time:

Page 1 of 1

ATTACHMENT G

Tables of Parameter Detection Limits, Accuracy, and Precision

Parameter:	(Dissolved) Ortho- Phosphate (as P)	Total Phosphorous (as P)	Ammonia- Nitrogen	Nitrate- Nitrogen [†]	Nitrite - Nitrogen [†]	Total Kjeldahl Nitrogen	Total Suspended Solids	Total Dissolved Solids [†]
Referenced Methodology –(NJDEP Certified Methodology)	EPA 365.2	EPA 365.2	EPA 350.2	EPA 300.0	EPA 300.0	EPA 351.3	EPA 160.2	EPA 160.1
Technique Description	Ascorbic Acid, Manual Single Reagent	Persulfate Digestion + Manual	Distillation, Titration	Ion Chroma- tography	Ion Chroma- tography	Digestion, Distillation, Titration	Gravi- metric, 103-105°C, Post Washing	Gravi- metric, 180°C
Method Detection Limit (ppm) – Calculated	0.005	0.01	0.164	0.027	0.08	0.579	4	8.9
Instrument Detection Limit (ppm)	NA	NA	NA	NA	NA	NA	NA	NA
Project Detection Limit (ppm)	0.015	0.03	0.5	0.27	0.8	1.8	12	10
Quantitation Limit (ppm)	0.015	0.03	0.5	0.27	0.8	1.8	12	10
Accuracy (mean % recovery	98.2	99.6	103.4	90-110	90-110	101.6	NA	NA
Precision -% (mean – RPD	2.23	1.6	2.7	20	20	2.8	9.4	20
Accuracy Protocol (% recovery for LCL/UCL)	75.00 / 123.20	75.00 / 123.20	86.636 / 103.981			80.8 / 116.8	NA	
Precision Protocol - % (maximum RPD)	4.7	4.9	4.6			5.13	28.6	

Parameter Detection Limits, Quantitation Limits, Accuracy, and Precision

RPD- Relative % Difference; NA-Not Applicable Laboratory: Bergen County Utilities Authority – (NJDEP #02268) [†]Laboratory: Hampton Clarke Veritech – (NJDEP #14622)

Parameter:	pH (SU)	Temperature (°C)	Dissolved Oxygen (mg/L)	[†] Fecal Coliform	[‡] Eschericia coli (E. coli)
Referenced Methodology – (NJDEP Certified Methodology)	Standard Methods 4500-H ⁺ B	Standard Methods 2550 B	Standard Methods 4500-O G	Standard Methods 9222D	EPA 1603
Technique Description	Electrometric	Thermometric	Electrode	Membrane Filter (MF), Single Step	Membrane Filter (modified mTEC)
Method Detection Limit (ppm)	NA	NA	NA	2 (col/ 100 ml)	<10 organisms per 100 ml
Instrument Detection Limit (ppm)	0.00-14.00 S.U.	0.0 to 100.0 °C	0 – 20 mg/L	NA	NA
Project Detection Limit (ppm)	0.00-14.00 S.U.	0.0 to 100.0 °C	0 - 20 mg/L	2 (col/ 100 ml)	<10 organisms per 100 ml
Quantitation Limit (ppm)	NA	NA	NA	2 (col/ 100 ml)	60,000 organisms per 100 ml
Accuracy (mean % recovery)	NA	NA	NA	NA	NA
Precision (mean – RPD)	± 0.01 S.U.	± 0.3 °C	± 0.3 mg/l	5.7	NA
Accuracy Protocol (% recovery for LCL/UCL)	NA	NA	NA	NA	Detect – 144%
Precision Protocol (maximum RPD)	± 0.01 S.U.	± 0.3 °C	± 0.3 mg/l	20.55	61%

RPD – Relative % Difference; NA – Not Applicable Laboratory: Rutgers EcoComplex Laboratory (NJDEP #03019) [†]Laboratory: Bergen County Utilities Authority (NJDEP #02268) [‡]Laboratory: Garden State Laboratories, Inc. (NJDEP #20044)

LISA GALLOWAY EVRARD Program Associate • Rutgers Cooperative Extension 14 College Farm Road • New Brunswick, NJ 08901-8551 • USA Phone: 732/932-9800 x 6130 • Fax: 732/932-8644 <u>evrard@rci.rutgers.edu</u>

June 29, 2007

VIA E-MAIL Michele Bakacs Watershed Management Area 5 Manager Division of Watershed Management New Jersey Department of Environmental Protection 401 East State Street P.O. Box 418 Trenton, NJ 08625

Re: Addendum to Quality Assurance Project Plans (QAPPs) RP07-001 Tenakill Brook Watershed Restoration Plan RP07-002 Musquapsink Brook Watershed Restoration Plan

Michele:

For both the Tenakill Brook and Musquapsink Brook Watershed Restoration Plans, the Bergen County Utilities Authority (BCUA) has requested that surface water samples be delivered to the BCUA laboratory (NJDEP Certified Laboratory #02268) by noon for analysis. To date, this has not been a problem for the biweekly surface water sampling and additional bacteriology sampling. However, it will be extremely difficult, if not impossible, to meet this sample drop-off requirement for the wet weather surface water sampling portion of these studies.

We would like to amend the QAPPs to reflect that for the wet weather surface water sampling portion of these studies Garden State Laboratories (NJDEP Certified Laboratory #20044) will be conducting the necessary water quality analyses. Garden State Laboratories is currently conducting the *E. coli* analyses for these studies, and they have more reasonable sample drop-off requirements, which will be suitable for the wet weather surface water sampling portion of these studies.

I have attached the following for you to review and for you to forward to the Office of Quality Assurance:

- Wet Weather Surface Water Sampling Parameter Detection Limits, Quantitation Limits, Accuracy, and Precision
- Wet Weather Surface Water Sampling Table 1A: List of Approved Biological Methods & Table 1B: List of Approved Inorganic Test Procedures, 40 CRF Part 136.3, July 1, 2005
- Wet Weather Surface Water Sampling Table II: Required Containers, Preservation Techniques, and Holding Times, 40 CFR Part 136.3, July 1, 2005.

If you have any questions, please do not hesitate to contact me at <u>evrard@rci.rutgers.edu</u> or call me at 732-932-9800 x 6130. If for some reason we are not allowed to use Garden State Laboratories for the wet weather surface water sampling portion of the Musquapsink and Tenakill studies, please contact me, Katie Buckley at <u>kbuckley@envsci.rutgers.edu</u>, or Rob Miskewitz at <u>rmiskewitz@aesop.rutgers.edu</u> as soon as possible.

Thank you for your attention to this matter.

Sincerely,

Lisa Galloway Eurard

Lisa Galloway Evrard QAPP QA Officer

C: P. Rector C. Obropta K. Buckley R. Miskewitz

Wet Weather Surface Water Sampling

Parameter Detection Limits, Quantitation Limits, Accuracy, and Precision

RP07-002 MUSQUAPSINK BROOK WATERSHED RESTORATION PLAN & & RP07-001 TENAKILL BROOK WATERSHED RESTORATION PLAN

Wet Weather Surface Water Sampling Parameter Detection Limits, Quantitation Limits, Accuracy, and Precision

Parameter:	(Dissolved) Ortho- Phosphate (as P)	Total Phosphorous (as P)	Ammonia- Nitrogen	Nitrate- Nitrogen	Nitrite - Nitrogen	Total Kjeldahl Nitrogen	Total Suspended Solids
Referenced Methodology –(NJDEP Certified Methodology)	Standard Methods 4500-P E	Standard Methods 4500-P E	Standard Methods 4500-NH ₃ D	EPA 353.2	Standard Methods 4500-NO ₂ B	LACHAT 10- 107-06-2-D	Standard Methods 2540 D
Technique Description	Colorimetric	Persulfate Digestion + Manual	Electrode	Automated Cadmium Reduction	Spectro- photometric	Digestion, Distillation, Semiautomated Digestor	Gravi- metric, 103-105°C, Post Washing
Method Detection Limit (ppm) – Calculated	0.008	0.010	0.018	0.010	0.0002	0.059	NA
Instrument Detection Limit (ppm)	0.01	0.01	0.05	0.20	0.005	0.50	NA
Project Detection Limit (ppm)	0.015	0.03	0.5	0.27	0.8	1.8	12
Quantitation Limit (ppm)	0.015	0.03	0.5	0.27	0.8	1.8	12
Accuracy (mean % recovery	100.8	93.7	99.2	103.9	98.6	89.9	NA
Precision -% (mean – RPD	1.20	0.56	1.75	0.72	1.32	1.50	3.85
Accuracy Protocol (% recovery for LCL/UCL)	90 / 110	90 / 110	90 / 110	90 / 110	90 / 110	90 / 110	90 / 110
Precision Protocol - % (maximum RPD)	10%	10%	10%	10%	10%	10%	10%

RPD- Relative % Difference; NA-Not Applicable

Laboratory: Garden State Laboratories, Inc. (NJDEP #20044)

Parameter:	[†] pH (SU)	[†] Temperature (°C)	[†] Dissolved Oxygen (mg/L)	Fecal Coliform	Eschericia coli (E. coli)
Referenced Methodology – (NJDEP Certified Methodology)	Standard Methods 4500-H ⁺ B	Standard Methods 2550 B	Standard Methods 4500-O G	Standard Methods 9222D	EPA 1603
Technique Description	Electrometric	Thermometric	Electrode	Membrane Filter (MF), Single Step	Membrane Filter (modified mTEC)
Method Detection Limit (ppm)	NA	NA	NA	<10 organisms per 100 ml	<10 organisms per 100 ml
Instrument Detection Limit (ppm)	0.00-14.00 S.U.	0.0 to 100.0 °C	0 – 20 mg/L	NA	NA
Project Detection Limit (ppm)	0.00-14.00 S.U.	0.0 to 100.0 °C	0 - 20 mg/L		<10 organisms per 100 ml
Quantitation Limit (ppm)	NA	NA	NA		60,000 organisms per 100 ml
Accuracy (mean % recovery)	NA	NA	NA	NA	NA
Precision (mean – RPD)	± 0.01 S.U.	± 0.3 °C	± 0.3 mg/l	NA	NA
Accuracy Protocol (% recovery for LCL/UCL)	NA	NA	NA	NA	Detect – 144%
Precision Protocol (maximum RPD)	± 0.01 S.U.	± 0.3 °C	± 0.3 mg/l	NA	61%

RPD – Relative % Difference; NA – Not Applicable

Laboratory: Garden State Laboratories, Inc. (NJDEP #20044) [†]Laboratory: Rutgers EcoComplex Laboratory (NJDEP #03019)

Wet Weather Surface Water Sampling

Table 1A – List of Approved Biological Methods & Table 1B – List of Approved Inorganic Test Procedures 40 CFR Part 136.3 July 1, 2005

RP07-002 MUSQUAPSINK BROOK WATERSHED RESTORATION PLAN & RP07-001 TENAKILL BROOK WATERSHED RESTORATION PLAN

	Other								Colliert @13,17	CONFELT - 18 6 12 POINT	mColBue 24 18			Erterolert ^{en 3,23}			
	USGS		B-0050-	202		B-0025-	а С 2										
8	ADAC								991.1511			B-0055-	000				
cal Metho	ASTM									D5392-93 10				D6503-9910 D5259-9210			
TABLE IA-LIST OF APPROVED BIOLOGICAL METHODS	Standard methods 18th, 19th, 20th Ed.	9221C E4	9222D*	9221C E4	9222D4 9221B4	9222B ⁴	9221B4	9222(B+B.5c)4 9221B.1/9221F 4.12.14	9223B4,13	9222B/92226.4.19 9213D.4	9230B4, 9230C4		9230B4	9230C ⁴			
A-LIST O	EPA	p. 132 ³	p. 1243	p. 132 ³	p. 1243 p. 1143	p. 108 ³	p. 1143	p. 1113		103 120 1603 23 1604 22	p. 1393	p. 136 ³	p. 1434	1106.124 160025 p. 1433	162228 162228	1623 27	2002.029
TABLE I	Method ¹	num- Most Probable Number (MPN), 5	Membrane filter (MF)2, single	MPN, 5 tube, 3 dilution, or	MF, single step ⁸ MPN, 5 tube, 3 dilution, or	MF2, single step or two step	MPN, 5 tube, 3 dilution, or	MF 2 with enrichment MPN 7,8,15, multiple tube.	multiple tube/multiple well,	MF 2.6.7.8.9 two step, or single step	MPN, 5 tube, 3 dilution,	MF ² , or	Plate count MPN 7.9 multiple tube	multiple tube/multiple well MF267.89 two step single step. or Plate count	Filtration/IMS/FA	Filtration/IMS/FA	Ceriodaphnia dubia acute
	Parameter and units	Bacteria. 1. Coliform (fecal), num-	V	2. Coliform (fecal) in presence of chlorine) mL.	Der per 100 mL.	je ⊒.	5. E. coli, number per	NU ML 20.	v	Ŕ	number per Invitin.	7. Enterococci, number		Protozoa: 8. Cryptosporidium ²⁶	9. Giardia ²⁸	Aquater loxicity, acute, fresh water organisms, LC50, percent effluent.

7

Environmental Protection Agency

§136.3

QAPP Addendum, 6/29/07 RP07-002 Musquapsink Brook Watershed Restoration Plan RP07-001 Tenakill Brook Watershed Restoration Plan

Environmental Protection Agency

1008.031 Sea urchin, Arbecia punctulata, fartilization

free of extractables which could interfere with their cultivated and to be eq. manufacturer to fully retain organisms to specified when results are reported. a filter (MF) or other pore size certified by the Notes to Table IA ¹ The method must be s ²A 0.45 µm membrane

Methods for Monitoring the Environments, Wastes, Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency ^aUSEPA 1978. Microbiological incinnati, Ohio. EPA/600/8–78/01 4 APHA 1998, 1995, 1992. Star

9

USER, 1987. Control of the cont

Vater by Membrane Filtration Using membrane-Entercooccus indoxyi,P.D.Glucoside Agar (mEI), U.S. Environmental Protection Agency, 04 022 2002. Method 1500: Enteracoo Washington. DC. EPA-821-Rof Water, Washington D SUSEPA, 2002, Method fice of Water, Washingh Method 1622 uses

ocosts from cartured material, immunollocrescence assay to determine concentrations, and confination detection of Cryptospontisim. USEPA. 2001, Method 1622, Cryptospondum in Water by Fitration/MSEFA 2.4E-01-029. etic separation of oc microscopy for the c ngton DC. EPA-821uses filtration.

and differential interference co ction Agency, Office of Water, 1 dye staining and i mental Protection through vital d U.S. Environm 27 Method 1

coysts and crysts from captured material, immunoflucrescence assay to determine concertrations, and con-cords for the simultaneous detection (Cryboscoroftm and Gardera occysts and cysts. USEPA, 2001, Method and Protection Agency, Crine or Water, Washington DC, EPA-821-R-011-025. c separation of occysts a ontrast microscopy for th U.S. Environmental Pro ofta 1623 uses filtration, ugh vital dye stainir dium ad for 1623. Or 28 R an

§136.3

QAPP Addendum, 6/29/07 **RP07-002** Musquapsink Brook Watershed Restoration Plan RP07-001 Tenakill Brook Watershed Restoration Plan

Acute Toxicity of Effluents and Receiving W 2012.	timating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. Fourth Edition. U.S. Environmental Protec-	time-used to Chronic Toxicity of Effluents and Receiving Waters to Marine and Estuarine Organisms. Third Edition, U.S. Environmental	A/R01/R_00/014
Measuring the Ac EPA/821/R-02/0	 October 2002. Short-term Methods for Estimating the Chronic Toxicity of Office of Metro Machinetics PC EDA (2012) 	 October 2002. Short-term Methods for Estimating the Chronic Toxicity of the control of the control	Manery Office of Water Washington DC. EPA/821/R-02/014
29 USEP Agency, 0	30USEP	31 USEP	Protection

§136.3

	14
	1
	,
	J
	1
	1
4	
5	1
2	
0	ġ
÷	
4	
1	
20	
1	ĥ
1.	1
п	
3	
ă	
C	
2	
6	
5	
in .	
00	
5	
-	
Ð	
02	
5	
0	
ō .	
UTIC8	

	TABLE IB-	TABLE IB-LIST OF APPROVED INORGANIC TEST PROCEDURES	RGANIC TEST PROCEDUR	tes	
Deremator units and		Ref	Reference (method number or page)	(e)	
method	EPA1, 35	Standard Methods [Edi- tion(s)]	ASTM	USGS2	Other
1. Acidity, as CaCO ₃ , mg/L; Electrometric endpoint or phenolphthalein endpoint.	305.1	2310 B(4a) [18th, 19th, 20th]	D1067-92	I-1020-85	
 Alkelinity, as CeCOs, mgA.: Electrometric of Colorimetric thration to pH 4.5, manual or automatic 	310.1	2320 B [18th, 19th, 20th]	D1067-92	I-2030-85 I-1030-85 I-7030-85	973.433
 Aluminium—Total.⁴ mg/L, Diges- tion⁴ followed by: Ad direct aspiration³⁶ 	202.1	3111 D [18th, 19th]		I-2050-05	
An turnace Inductively Coupled Plasma/ Atomic Emission Spec- trometry (ICP/AFS)35	202.2 200.75	3113 B [18th, 19th] 3120 B [18th, 19th, 20th]		1-4471-9750	
Direct Current Plasma (DCP)36.			D4190-94		Note 34.
Colorimetric (Eriochrome		3500–AI B (20th) and 3500–AI D [18th, 19th].			
Manual, distillation (at pH 9.516 followed by	350.2	4500-NH3 B [18th, 19th, 20th1			973,493
Nesslerization	350.2 350.2	4500-NH ₃ C [18th] 4500-NH ₃ C [19th, 20th]	D1426-98(A)	I-3520-85	973.493
Electrode	350.3	4500-NH3 D rE [18th] 20th and 4500-NH3 F or 20th and 4500-NH3 F or	D1426-98(B).		
Automated phenate, or	350.1	6 [19th], 4500–NH ₃ G [19th, 20th] and 4500–NH ₃ H [18th].		1-4523-85	
Automated electrode 5. Antimony-Total, ⁴ mg/L; Digestion ⁴					Note 7.
A direct aspiration ³⁶ AA furnace ICP/AES ³⁶ 6 Arsenio-Total ⁴ mol.	204.1 204.2 200.7 ⁵	3111 B [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th, 20th]			

10

40 CFR Ch. I (7-1-05 Edition)

QAPP Addendum, 6/29/07 RP07-002 Musquapsink Brook Watershed Restoration Plan RP07-001 Tenakill Brook Watershed Restoration Plan

December with and		Ref	Reference (method number or page)	ge)	
method	EPA1, 35	Standard Methods [Edi- tion(s)]	ASTM	US6S2	Other
Trimetric (EDTA), or Ca plus Mg as their cathon- ates, by inductively cou- pled plasma or AA direct aspiration (See Param-	130.2	2340 B or C [18th, 19th, 20th]	D1126-86(92)	I-1338-85	973,5283
~	150.1	4500-H* B [18th, 19th) 20th]	D129384 (90)(A or B)	H-1586-85 H-2587-85	973.413 Note 21.
otal," mg/L, Urgestion* rect aspiration or mace al.* mg/L; Digestion*	235.1 235.2	3111 B [18th, 19th]			
nolowed by AA direct aspiration 36 AA fumace ICP/AES 36	236.1 236.2 200.73	3111 B or C [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th, 20th]	D1068-96(A or B) D1068-96(C)	I-3381-85 I-4471-9739	974.273
DCP36 or Colorimetric (Phenam- Colorimetric (Phenam- tri Kjeldahi Nitrogen-Total, (as N);		3500-Fe B [20th] and 3500-Fe D [18th, 19th]	D4190-94 D1068-96(D)		Note 34. Note 22.
mg.t.: Digestion and distillation fol- lowed by.	ks1.3	4500-Norg B or C and 4500-NH3 B [18th, 19th, 20th1	D359089(A)		
Titration Nessienzation Electrode	3513 3513 3513	4500-NH3 C [18th] 4500-NH3 C [18th] 4500-NH3 C [19th, 20th] and 4500-NH5 E [18th]	D3590-89(A) D3590-89(A)		973.483
Automated phenete otommetric Semi-automated block digestor col- ontmetric.	351.1 \$51.2		D3590-99(B)	I-4551-788 I-4515-9145	
Marual or brock digestor potentio- metric. Block digester, followed by Auto dis-	351.4		D3590-89(A)		Note 39.
tillation and Trtration, or. Nesslenization, or Flow injection gas diffusion 32. Lead-Total,4 mg/L; Digestion4					Note 40. Note 41.
followed by: AA direct aspiration 36 239.1		3111 B or C [18th 19th] D3559-96(A or B) [-3399-85	D3559-96(A or B)	1-3399-85	974.273

§136.3

40 CFR Ch. I (7-1-05 Edition)

QAPP Addendum, 6/29/07 RP07-002 Musquapsink Brook Watershed Restoration Plan RP07-001 Tenakill Brook Watershed Restoration Plan TKN: Lachat 10-107--06-2-D; Digestion, Distillation, Semiautomatic Digestor

Note 34.	. 974.27 ³ Note 34.	974.273 Nobe 34 920.2033 Moreo 23	977.22 ³	. Note 34.		
14408-8951 1-4471-9750	1-347-85 1-4471-9750	-3454-85 -4471-9750	I-3462-65	-3490-85 -3490-96 47 -4471-97 50	H-3499-85 H-4503-89 st H-4471-97 ^{sp}	
D3559-96(D) D4190-94 D3559-96(C)	D511-93(B)	D858-95(A or B) D658-95(C) D4190-94	D3223-91		D1886-90(A of B) D1886-90(C) D4190-94 D4190-94	D3667-99(B)
3113 B [18th, 19th]	3111 B [18th, 19th] 3120 B [18th, 19th, 20th] 3500-Mg D [18th, 19th]	3111 B [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th] 3500-Mn B [20th] and 3500-Mn D [18th, 19th]	3112 B [18th, 19th]	3111 D [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th, 20th]	3111 B or C [18th, 19th] 3113 B [18th, 19th] 3120 B [18th, 19th] 3500-M D [171h]	4500-N03-E [18th, 18th, 20th] ium
239.2 200.75	242.1 200.75	243.1 243.2 200.75	24.5.1 24.5.1 16.31E 48	2461 2462 20075	2491 2492 20075 3521	353.3 .2; Automated Cadm
AA fumace CP/AES ³⁸ DCP ³⁶ Voltametry ¹¹ or Colorimetric (Dthizone) 33. Magnesium—Total, ⁴ mg/t. Di-	by spiration al.4 mg.A.; Diges-	bon to the aspiration as An direct aspiration a	mg/L. manual or purge and trap, vapor atomic flu- e spectrometry	.u	A dired aspiration ³⁶ A direct aspiration ³⁶ (CPA/ES38 (CPA/ES38 CCP38, or DCP38, or DCP38, or CCP38, or DCP38, or	mg/L: Cadmium reduction, Manual 353.3 4500 ar. Nitrate (as N), EPA 353.2; Automated Cadmium Reduction

15

Environmental Protection Agency

§136.3

TABLE IB-LIST OF APPROVED INORGANIC TEST PROCEDURES-CONTINUED	Reference (method number or page)	EP.A1.30 Standard Methods [Edi- ASTM US6S ² Other tion(s)]	353.2	353.1		304.1	0) Sver 413.1 5520B [18th, 18th, 20th] ³⁸ 1684A ⁴² 5520B [18th, 18th, 20th] ³⁸ 18te- 18te- 18te-	HEM 1664A ⁴²) 1664A ⁴²) 1000, 000,	1 415.1	uster La Carter	365.1 450.0-F [18th, 19th, 20th] D515-88(A) H4001-85 973.55 ³ 365.3 365.3 1000-100 1000-100 1000-100 1000-100 365.3 365.3 1000-100 1000-100 1000-100 1000-100 1000-100	252.1	ion), 360.2	
TABLE IB-LIST (EPA1.35	353.2	353.1		504.1	13.1 164A ⁴²	1664A 42.	415.1		365.1 365.2 365.3	252.1 252.2	360.2	360.1
	Development of the second	Harameter, units and method	Automated, or	Automated hydrazine	s N), mgh		Automated (Diaz dization)	Ne so	Combustion or oxidation 415.1	43. Organic nitrogan (as N), mg/L: Total Kiplahi Ni Prarameter 313, minus ammonia N Dearmaine 4)	or ale reagent 4. mg/L; Diges-	.or	40. UX9981, UISSUIVEU, IIIGL	Electrodo

§136.3

40 CFR Ch. I (7-1-05 Edition)

p. S2710 p. S2810 Note 34.	Note 27.	Note 27.	Nota 28	973.553	973.563			Note 34	973.533	217 D 17						
					I-4600-85	I-4610-9148			1-3630-85		I-3750-85.	I-1750-85.	H-3765-85.		H-3753-85.	
					D515-88(A)	D515-88(B)										
3111 B [18th, 19th]				4500-P B, 5 (18th, 19th,	4500-P E 18th, 19th, 20th] 4500-P F [18th, 19th, 20th]		3111 B [18th, 19th]		3111 B [18th, 19th] 3120 B [18th, 19th, 20th]. 3500-K B [20th] and 3500-	K D [18th, 19th].	2540 B [18th, 19th, 20th]	2540 C [18th, 19th, 20th]	2540 D 18th, 19th, 20th]	2540 F [18th, 19th, 20th].		3111 B [18th, 19th]
253.1 253.2 253.2	420.1	420.1	420.2	365.2	365.2 or 365.3 365.1	365.4	255.1 255.2		258.1 200.7s		160.3	160.1	160.2	160.5	160.4	265.1
47. Palladium—Total. ⁴ mg.L. Diges- tion ⁴ followed by: AA timect aspiration, or AA fumace DCP	48. Phenols, mg/L: Manual distillation 28	Followed by. Colorimetric (4AAP) manual.	Automated 19 49. Phosphorus (elemental), mg/L: 6000000000000000000000000000000000000	50. Phosphorus-Total, mg/L: Persulfate digestion fol-	Namual or Automated ascorbic acid re-	Semi-automated block	 Platinum—Total,⁴ mg/L: Diges- tion⁴ followed by: AA direct aspiration 	52. Potassium—Total, ⁴ mg/L: Diges-	tion4 followed by: Addrect aspiration CP/AES Flame photometric, or	Calorim chic	53, Residue—Total, mg/L. 6ravinertio, 103-105° 6ravine Alteratio and 1	24. residue-filterable, filge. Gradinetric 1800 Desidua-nonfilterable (TS)	mg.L.: Gravimetric, 103–105° post washing of residue	 Residue—setteade, mg/L: Volumetric. (Imhoff cone), or oravimetric. 	57. Residue—Volatile, mg/L. Gravimetric, 550° 58. Rhodium-Total, 4 mg/L. Diges-	tion ⁴ followed by: AA direct aspiration, or 265.1
							17						\sim			

Environmental Protection Agency

§136.3

Note 32.	Note 34.	Note 34.	974.27,3 p. 379 Note 34. Note 33.	ati (EMSL-CI), EPA-600/4-79-02 of Water-Resource Investigations
e 82/0-18 e	.58-0386-	1-44719750,	1-3900-85 1-4471-97 so.	ns Laboratory-Cincinn Interior, Techniques
D2330-88.	D188-94(A)	D3373-93. D4190-94	D1691-95(A or B) D4190-94	vironmental Monitoring Syster nerts, "U.S. Department of th
4500-5 ⁻²⁰ [18th, 19th, 20th] 4500-503- ² 8 [18th, 19th, 20th] 5540 C [18th, 19th, 20th] 2550 B [18th, 19th, 20th] 3111 B [18th, 19th, 20th]. 3111 B [18th, 19th, 20th].	3113 B [18th, 19th] 3111 D [18th, 19th] 2130 B [18th, 19th]	3111 D [188h, 198h] 3120 B [188h, 198h, 208h] 3500-V B [208h] and 3500- V D [188h, 188h]	3111 B or C [18th, 19th] 3120 B [18th, 19th, 20th] 3500-27n B [20th] and 3500-27n F [19th, 19th]	mental Protection Agency, En ces in Water and Fluvial Sedi
376.2	282.2 200.75, 283.1 283.2 180.1	286.1	289.1 289.2 200.75	Water and Wastes," Environ pplicable. Analysis of Inorganic Substan
Cuonnetric (metrylene 3/62 blue) 67. Suttle as So3, mg/L. Timmetric (odine-iodate) 377.1 88. Surfactarts, mg/L. 88. Temperature °C. 70. Thallum—Tctat/ mg/L. Dges- ton f followed by: 71. Tim—Totat/ mg/L. Diges- ton followed by: 71. Tim—Totat/ mg/L. Diges- 2003* 100ved by: 100ved by: 100		74, Varadium-Titat, ⁴ mg/L, Digas- thort blowed by: AA fundee pration AA fundee DCP, or DCP, or DCP, or	7.5. Linch-Idal, A mgL; Digeston 4 followed by. AA direct aspiration ³⁶ AA furnace ICP/AES 4 DCP ³ of DCP ³ of Commetric (Ditrizone) or (Zincon)	Table 1B Notes. - "Mathematic for Chemical Analysis of Water and Wastes," Environmental Protection Agency, Environmental Monitoring Systems Laboratory—Cincinnati (EMSL-CI), EPA-6004–79-020, Revised March 1973 and 1979 where applicable. - Revised March, M., et al. "Neghoods for Analysis of Ingoganic Substances in Water and Fluvial Sediments. "U.S. Department of the Interior, Techniques of Water-Resource Investigations of

Environmental Protection Agency

§136.3

20

40 CFR Ch. I (7-1-05 Edition)

Environmental Protection Agency

determination of total cyanide. Techniques of Water-Resources investigations of the

adjusted to 0.25 N before colonimetric Measurement and Data Presentation."

final concentration to be Influential Factors Field

solution Temperature-

Vater the NaOH

and 335.3

A FDA

1975

²⁰NICOPRIL, roux representation of the Norman Sectory and Sectory and Sectory and Sectory and Sectory Sector Corporation, 21 Forge Parking, Fanking MA 02038. Corporation, 21 Forge Parking, Fanking MA 02038. SPErosion and recovery statements for heading association and graphite times methods, and for the spectrophotometric SDDC method for streetic are provided in Approxible. To this partitibution and Recovery Statements for Measuring Mass'. SPECipical Vision and Recovery Statements for Methods for Measuring Mass'. SPECipical Vision and Recovery Statements for Methods for Metals'. CEM Corporation, PD Box 200, Matthews, NC 28106–0200, April 16, 1992. Available from the CEM Corporation. The CEM Corporation for the specim carbon of Metals', SEM Corporation, PD Box 200, Matthews, NC 28106–0200, April 16, 1992. Available from the CEM Corporation. The CEM Corporation for the correct above to water laboratory ware may be used from stat until completion of analysis. Then determining boron and silice only plastic. PTFE, or quartz laboratory ware may be used from stat until completion of analysis. To Only use Anhara extraction Soviet Thubitorehita Extraction Soviet Method 1684A). Use of dimer extraction Soviet When determining the Anhord TeXAA, Use of dimer extraction Soviet When determining the state Extraction Soviet Method States (12/2/294, 01 Analytical/LPTEM, PD Box 9010, College Station, TX PMICopen, Total Kjeldahi, Method PA-DN01 (Block Digestion, Steam Distillation, Titimetine Detection), revised 12/2/294, 01 Analytical/LPTEM, PD Box 9010, College Station, TX PMICopen, Total Kjeldahi, Method PA-DN02 (Block Digestion, Steam Distillation, Coloimetine Detection), revised 12/2/294, 01 Analytical/LPTEM, PD Box 9010, College Station, TX PMICopen, Total Kjeldahi, Method PA-DN02 (Block Digestion, Steam Distillation, revised 12/2/294, 01 Analytical/ALPTEM, PD Box 9010, College Station, TX PMICopen, TX PA Revised 1991, Thermo Jarrell Ash Hach, Hanbook of Water Analysis, 1979, pages 2-231 and 2-333 Hach Chemical Company. Loveland, CO 80537 cal Emission Spectrometric Method for Trace Elemental Analysis of Water and Wasters, Method AES0029," 1988–Rr Optical Emission Inkin, MA 02038. Ris, HM, Linewow, Linewow, Linewow, Linewow, Linewow, Book 1, Chapter D1, 1 Zincom Method, Method 8009, Hach Z Ourent Pasama (OUCP) Optical Em on, 22 Forge Parkway, Frankin, MA, on, 22 Forge Parkway, Frankin, MA, enn and recovery statements for the U.S. Geologi 33 Zinc, Zir 34 "Direct (

21

COMPOUNDS	
ORGANIC	
VON-PESTICIDE	
PROCEDURES FOR 1	
TEST	
APPROVED	
-LIST OF	
TABLE IC	

	ш	EPA method number 2.7	5		Other approved methods	
Parameter	90	GCMS	HPLC	Standard Methods [Edition(s)]	ASTM	Other
1. Acenaphthene	610	625, 16258	610	6440 B [18th, 19th,	D4657-92	Note 9, p.27.
2. Acenaphthylene	610	625, 1625B	610	6440 B, 6410 B [18th,	D4657-92	Note 9, p.27.
3, Acrolein 4. Acroiontrile	603 603	6244, 1624B 6244, 1624B		Timoz 'unes		
5. Anthracene	610	625, 16258	610	6410 B, 6440 B [18th, 10th 20th]	D4657-92	Note 9, p. 27.

§136.3

Wet Weather Surface Water Sampling

Table II - Required Containers, Preservation Techniques, and Holding Times40 CFR Part 136.3July 1, 2005

RP07-002 MUSQUAPSINK BROOK WATERSHED RESTORATION PLAN & & RP07-001 TENAKILL BROOK WATERSHED RESTORATION PLAN

3544. Available from the American Society for Microbiology, 1752 N Street NW., Washington, DC 20036. Table IA, Note 22.

(58) USEPA. 2002. Method 1604: Total Coliforms and Escherichia coli (E. coli) in Water by Membrane Filtration using a Simultaneous Detection Technique (MI Medium). U.S. Environmental Protection Agency, Office of Water, Washington D.C. September 2002, EPA 821-R-02-024. Available from NTIS, PB2003-100129. Table IA, Note 22.

(59) USEPA. 2002. Method 1600: Enterococci in Water by Membrane Filtration using membrane-Enterococcus Indoxyl-β-D-Glucoside Agar (mEI). U.S. Environmental Protection Agency, Office of Water, Wash-ington D.C. September 2002, EPA-821-R-02-022. Available from NTIS, PB2003-100127. Table IA, Note 25.

(60) USEPA. 2001. Method 1622: Cryptosporidium in Water by Filtration/ IMS/FA. U.S. Environmental Protec-tion Agency, Office of Water, Wash-ington, DC April 2001, EPA-821-R-01-026.

Available from NTIS, PB2002-108709.

 Table IA, Note 26.

 (61)
 USEPA. 2001. Method 1623:

 Cryptosporidium and Giardia in Water

 Filtration/IMS/FA. U.S. by Environmental Protection Agency, Office of Water, Washington, DC April 2001, EPA-821-R-01-025. Available from NTIS, PB2002-108710. Table IA, Note 27. Washington, DC April 2001, 1-R-01-025. Available from

(62) AOAC. 1995. Official Methods of Analysis of AOAC International, 16th Edition, Volume I, Chapter 17. AOAC International. 481 North Frederick Avenue, Suite 500, Gaithersburg, Maryland 20877-2417. Table IA, Note 11.

(c) Under certain circumstances the Regional Administrator or the Director in the Region or State where the discharge will occur may determine for a particular discharge that additional 40 CFR Ch. I (7-1-05 Edition)

parameters or pollutants must be reported. Under such circumstances, additional test procedures for analysis of pollutants may be specified by the Regional Administrator, or the Director upon the recommendation of the Director of the Environmental Monitoring Systems Laboratory-Cincinnati.

(d) Under certain circumstances, the Administrator may approve, upon recommendation by the Director, Environmental Monitoring Systems Laboratory-Cincinnati, additional alternate test procedures for nationwide use.

(e) Sample preservation procedures, container materials, and maximum allowable holding times for parameters cited in Tables IA, IB, IC, ID, and IE are prescribed in Table II. Any person may apply for a variance from the prescribed preservation techniques, container materials, and maximum holding times applicable to samples taken from a specific discharge. Applications for variances may be made by letters to the Regional Administrator in the Region in which the discharge will occur. Sufficient data should be provided to assure such variance does not adversely affect the integrity of the sample. Such data will be forwarded, by the Regional Administrator, to the Director of the Environmental Monitoring Systems Laboratory-Cincinnati, Ohio for technical review and recommendations for action on the variance application. Upon receipt of the recommendations from the Director of the Environmental Monitoring Systems Laboratory, the Regional Administrator may grant a variance applicable to the specific charge to the applicant. A decision to approve or deny a variance will be made within 90 days of receipt of the application by the Regional Administrator.

TABLE II-REQUIRED CONTAINERS	, PRESERVAT	TON TECHNIQUES, AND HO	OLDING TIMES
Parameter No /name	Container1	Preservation 2.3	Maximum holding ti

Parameter No /name	Container ¹	Preservation 2,3	Maximum holding time 4
Table IA—Bacteria Tests: 1–5 Coliform, total fecal, and E. coli	(PP);;	Cool, <10 °C, 0.0008% Na5S2035	6 hours.
6 Fecal streptococci 7 Enterococci Table IA—Protozoa Tests:		Cool, <10° 0.0008% Na ₂ S ₂ O ₃ ⁵ Cool, <10° 0.0008% Na ₂ S ₂ O ₃ ⁵	6 hours. 6 hours.
8 Cryptosporidium 9 Giardia	LDPE	0-8 °C 0-8 °C	96 hours. ¹⁷ 96 hours. ¹⁷
Table IA—Aquatic Toxicity Tests: 6–10 Toxicity, acute and chronic	P,G	Cool, 4 ºC 16	36 hours.

Environmental Protection Agency

§136.3

TABLE II-REQUIRED CONTAINERS, PRESERVATION TECHNIQUES, AND HOLDING TIMES-Continued

Parameter No /name	Container ¹	Preservation ^{2,3}	Maximum holding time 4
Table IB—Inorganic Tests:			
A Addition	ID C	Cool 48C	1 dd dour
1. Acidity	P.G	Cool, 4°C	14 days.
1. Acidity 2. Alkalinity 4 Ammonia	P.G.	do Cool, 4°C, H2SO4 to pH<2	Do.
4 Ammonia	(P)G	Cool, 4°C, H ₂ SO ₄ to pH<2	28 days
Biochemical oxygen demand	TP. G	C00I. 4 °C	48 hours.
10. Boron	P, PETE, or	HNO3 TO pH<2	6 months.
	Quartz.		
11. Bromide	P. G	None required	28 days.
Biochemical oxygen demand, carbonaceous	P. G	Cool, 4°C	48 hours.
15. Chemical oxygen demand	P. G	Cool, 4°C, H2SO4 to pH<2	28 days.
16. Chloride	P. G	None required	Do.
17. Chlorine, total residual	I P. G	do	Analyze immediately.
21. Color	P. G	Cool. 4°C	48 hours.
23-24. Cyanide, total and amenable to	P.G	Cool, 4°C Cool, 4°C, NaOH to pH>12,	14 days.6
chlorination.		0.6g ascorbic acid 5.	
25 Eluoride	P	None required	28 days.
27 Hordnee	P. G P. G P. G	HNO3 to pH<2, H2SO4 to pH<2	6 months
27. Hardness ZEDlydrogen ion (pH)	P.G	None required	Analyze immediately
Avalogen ion (pH)	E.G.	None required	
Alter and organic nitrogen	0.	Cool, 4°C, H2SO4 to pH<2	28 days.
Aetas:			
18. Chromium VI7	P. G	Cool, 4 °C	24 hours.
35. Mercury 17	P. G	HNO ₃ to pH<2	28 days.
3, 5-8, 12,13, 19, 20, 22, 26, 29, 30, 32-34,	P. G	do	6 months.
36, 37, 45, 47, 51, 52, 58-60, 62, 63, 70-72,			
74, 75. Metals except boron, chromium VI			
and mercury ⁷ .	-		
38 Dtrate	O	Cool, 4°C	48 hours.
39. Nitrate-nitrite	PG	Cool, 4°C, H2SO4 to pH<2	28 days.
4D Vitrite	þ.	Cool 49C	48 hours.
41. Oil and grease	G	Cool, 4°C Cool to 4°C, HCl or H ₂ SO ₄ to	28 days.
41. Oli and grease	G	pH<2.	28 days.
42. Organic Carbon	P. G	pH<2.	00 days
42. Organic Carbon	P, G	Cool to 4 °C HC1 or H ₂ SO4 or	28 days.
\sim	2	H ₃ PO4, to pH<2.	
	PG	Filter immediately, Cool, 4°C	48 bours.
46 Oxygen, Dissolved Probe	G Bottle and	None required	Analyze immediately.
0	top.		
47. Winkler	do	Fix on site and store in dark	8 hours.
48 Phonois	G only	Cool, 4°C, H2SO4 to pH<2	28 days.
49 Phosphorus (elemental)	G	Cool, 4°C Cool, 4°C, H2SO4 to pH<2	48 hours.
50 Prosphorus total	PG	Cool 4ºC HaSO4 to pH<2	28 days.
52 Decidue total	D G	Cool, 4°C	7 days.
54 Dociduo Eiltorablo	P G	do	7 days.
49 Phosphorus (elemental) 50 Drosphorus (total 53 Residue, total 54 Residue, Filterable 55 Stesidue, Nonfiterable (TSS) 55 Desidue, Schlachter, S	CO C	dodo	7 days.
SS Residue, Nonfliterable (155)	P		7 days.
50. Residue, Settleable		do	48 hours.
57. Residue, volatile	P. G	do	7 days.
61. Silica	P, PFTE, or	Cool, 4 °C	28 days.
	Quartz.		
64. Specific conductance	P. G	do	Do.
65. Sulfate	P. G	do	Do.
66. Sulfide	P.G	Cool, 4°C add zinc acetate	7 days.
00.001100		plus sodium hydroxide to pH>9.	r days.
07. Culft-	D O	None required	An all ma lange a district
67. Sulfite	P. G	Code 490	Analyze immediately.
68. Surfactants	P ,G	Cool, 4°C	48 hours
(69)Temperature	P. G	None required	Analyze.
69 Temperature	P. G	Cool, 4°C	48 hours.
able IC—Organic Tests®	100 Internet	and the particular in the second second second	
13, 18-20, 22, 24-28, 34-37, 39-43, 45-47, 56, 76, 104, 105, 108-111, 113. Purgeable	G, Teflon-	Cool, 4 °C, 0.008% Na2S2O35.	14 days.
56. 76. 104. 105. 108-111. 113. Purgeable	lined sep-		
Halocarbons.	tum.		1
6, 57, 106. Purgeable aromatic hydrocarbons	do	Cool, 4 °C, 0.008% Na2S2O3.5	Do.
o, or, roo. Purgeable aromatic nyurocarbons		HCI to pH29.	00.
0.4 Associate and exercise likely		Port 4 00 00000 Mr 0 0 5	D.2
3, 4. Acrolein and acrylonitrile	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ , ⁵ adjust pH to 4–5 ¹⁰ .	Do.
	100 H 10	adjust pH to 4-510	THE
23, 30, 44, 49, 53, 77, 80, 81, 98, 100, 112. Phenols ¹¹	G, Teflon- lined cap	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ 5	7 days until extraction; 40 days after extrac-
	100	1.00	tion.
7, 38. Benzidines ¹¹	do	do	7 days until extraction.13
14, 17, 48, 50-52. Phthalate esters 11	do	Cool, 4 °C	7 days until extraction; 40 days after extrac- tion.

§ 136.3

40 CFR Ch. I (7-1-05 Edition)

TABLE IL-REOLIBED (CONTAINERS, PRESERVATIO	N TECHNIQUES AND HOLD	ING TIMES-Continued

Parameter No /name	Container 1	Preservation 2, 3	Maximum holding time*
82-84. Nitrosamines 11 14	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ ,5 store in dark	Do.
88-94, PCBs ¹¹	do	Cool. 4 °C	Do.
54, 55, 75, 79 Nitroaromatics and isophorone ¹¹	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ , ⁵ store in dark	Do.
 2, 5, 8–12, 32, 33, 58, 59, 74, 78, 99, 101. Polynuclear aromatic hydrocarbons¹¹. 	do	do	Do.
15, 16, 21, 31, 87. Haloethers 11	do	Cool, 4 °C, 0.008% Na ₂ S ₂ O ₃ 5	Do.
29, 35–37, 63–65, 73, 107. Chlorinated hydro- carbons ¹¹ .	do	Cool, 4 °C	Do.
60-62, 66-72, 85, 86, 95-97, 102, 103. CDDs/ CDFs ¹¹			
aqueous: field and lab preservation.	G	Cool, 0-4 °C, pH<9, 0.008% Na ₂ S ₂ O ₃ ⁵ .	1 year.
Solids, mixed phase, and tissue: field preserva- tion.	do	Cool, <4 °C	7 days
Solids, mixed phase, and tissue: lab preserva- tion.	do	Freeze, < 10 °C	1 year.
able ID—Pesticides Tests:		and the second second second	
1-70. Pesticides 11	do	Cool, 4°C, pH 5-915	Do.
able IE-Radiological Tests		23 69502	
1-5. Alpha, beta and radium	P. G	HNO3 to pH<2	6 months

 1-5. Alpha, beta and radium
 P, G
 HNO₃ to pH<2</th>
 6 months

 Table II Notes
 Polystylene (P) or glass (G). For microbiology, plastic sample containers must be made of stenizable materials (poly-propylene or other autoclavable plastic).
 25 simple preservation should be performed immediately upon sample collection. For composite chemical samples each aliquot should be preserved at the time of collection. When use of an automated sampler makes it impossible to preserve each aliquot should be preserved by minimising at 4% C LmB1 compositing and sample polititing is completed.

 ³ Vithen any sample is to be shipped by common carrier or sent through the United States Malis, it must comply with the De-partment of Transportation Buzerdous Materials Regulations (49 CFR) part 172). The person oftering such material for transpor-tation is responsible for ensuring such compliance. For the preservation requirements of Table II, the Office of Hazardous Mater-als. Materials Transportation Buzerdou (HNCs) in water solutions at concentrations of 0.04% by weight or less (pH about 1.55 or greater). Nutric acid (HNCs) in water solutions at concentrations of 0.04% by weight or less (pH about 1.55 or greater). Sulture acid (HNCs) in water solutions at concentrations of 0.04% by weight or less (pH about 1.52 or greater). Alter acid (HNCs) in water solutions at concentrations of 0.04% by weight or less (pH about 1.55 or greater). Nutric acid (HNCs) in water solutions at concentrations of 0.04% by weight or less (pH about 1.52 or greater). and Soduim Mydroxide (NAOH) in water solutions at concentrations of 0.04% by weight or less (pH about 1.52 or greater). and Soduim hydroxide (NAOH) in water solutions at concentrations of 0.04% by weight or less (pH about 1.52 or greater). and Soduim Mydroxide (NAOH) in water solutions at concentrations of 0.03% by weight or

dine). ¹² If 1,2-diphenylhydrazine is likely to be present, adjust the pH of the sample to 4.0±0.2 to prevent rearrangement to benzi-

¹⁴ Tr 12-0brief(9)(150 calls is any second and the second and the

¹⁴ For the analysis of diphenylnitrosamine, add 0.008% Na₂S₂O₃ and adjust pH to 7–10 with NaUH within 24 nours or sampling. The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are extracted within 72 hours of collection. For the analysis of addim, add 0.008% Na₂S₂O₃ and sigust pH to 7–10 with NaUH within 24 nours or sampling. The pH adjustment may be performed upon receipt at the laboratory and may be omitted if the samples are extracted within 72 hours of collection. For the analysis of addim, add 0.008% Na₂S₂O₃. ¹⁹ Sufficient ice should be placed with the samples in the shipping container to ensure that ice is still present when the samples are the laboratory. However, even if ice is present when the samples arrive, it is necessary to immediately measure the temperature of the samples and confirm that the 4C temperature maximum has not been exceeded in the isolated cases where temperature at this holding temperature can not be met, the permittee can be given the option of on-site testing or can request a variance. The request for a variance should include supportive data which show that the toxicity of the effluent samples solected for the determination of trace level mercury (100 ng/L) using EPA Method 1631 must be collected in tight-casped fluoropolymer or glass bottles and preserved with BTC (10 rHCI soluton within 48 hours of sample collector. The time to preservation may be extended to 28 days if a sample is ovidized in the samples solected for dissolved trace level mercury should be filtered in the laboratory. However, if circumstances prevent overnight shipment, samples that have been collected in a designated clean area in the field in accordance with procedures given in Method 1689. Samples that have been collected for determination of total or dissolved trace level mercury must be analyzed within 90 days of sample collection.

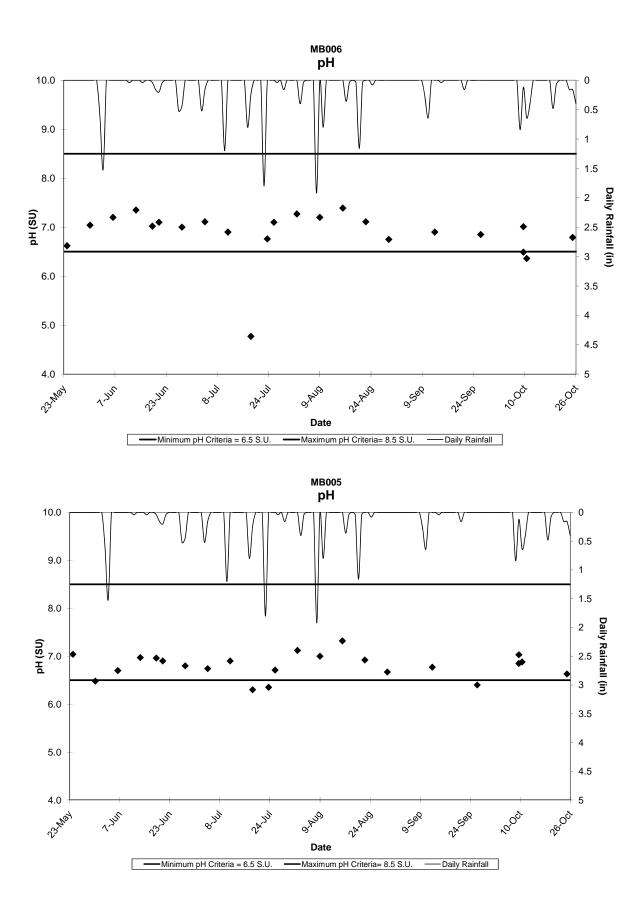
Appendix D: Tabulated Water Quality Monitoring Data

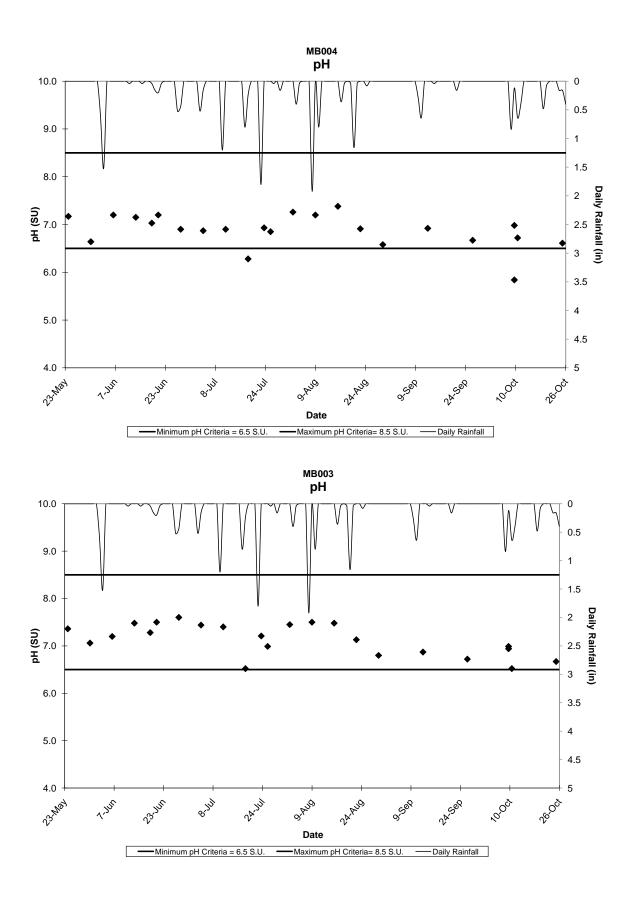
		Flow Rate	pН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH3- N		NO ₂ - N		NO3- N		PO ₄ ³⁻ Dissolved		ТР		TSS	
Date	Station ID	cfs	S.U.	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)	
5/24/2007	MB6	10.7	6.62	6.09	16.80	615	360	0.50	ND	0.50	ND	0.005	ND	1.300		0.03		0.06		19.00	
5/31/2007	MB6	3.9	7.04	6.60	18.70	2600	660	0.50	ND	0.50	ND	0.005	ND	1.100		0.03		0.05		9.00	
6/7/2007	MB6	7.6	7.20	6.30	16.40	720	570	1.10		0.50	ND	0.005	ND	1.000		0.06		0.15		2.00	ND
6/14/2007	MB6	9.3	7.35	NS	16.70	760	1200							Bacteria S	amnlin	a Only					
6/19/2007	MB6	7.8	7.02	6.57	20.40	1040	580							Bacterra	ampini	g Olify		•			
6/21/2007	MB6	7.7	7.10	6.20	18.40	3900	610	0.50	ND	0.50	ND	0.005	ND	1.400		0.07		0.04		2.00	ND
6/28/2007	MB6	31.4	7.00	6.80	22.30	650	38000		1		1			Bacteria S	amplin	g Only		•		r	
7/5/2007	MB6	33.4	7.11	8.14	19.00	4300	3700	0.50	ND	0.50	ND	0.005	ND	1.400		0.05		0.11		18.00	
7/12/2007	MB6	25.8	6.90	NS	23.10	60000	10000														ļ
7/19/2007	MB6	27.4	4.77	7.24	22.30	11000	5300							Bacteria S	amplin	g Only					
7/24/2007	MB6	20.3	6.76	7.57	19.60	11000	2600									8)					
7/26/2007	MB6	20.8	7.10	7.68	21.00	627	380						1	1	r			1			
8/2/2007	MB6	19.1	7.27	7.61	21.30	587	410	0.50	ND	0.50	ND	0.005	ND	2.000		0.08		0.10		2.00	ND
8/9/2007	MB6	25.1	7.20	7.20	24.10	900	480							Bacteria S	amplin	g Only		1			
8/16/2007	MB6	14.1	7.39	7.41	20.70	2500	760	0.50	ND	0.50	ND	0.005	ND	2.300		0.15		0.19		6.00	
8/23/2007	MB6	19.5	7.11	8.10	18.10	4300	560														
8/30/2007	MB6	4.3	6.75	7.77	19.50	660	380							Bacteria S	amplin	g Only					
9/13/2007	MB6	17.1	6.90	6.09	18.20	720	490								1						
9/27/2007	MB6	4.4	6.85	5.70	20.10	500	210		1	[1	[1	1	1	[r –	1		r	
10/10/2007	MB6	17.4	6.49	5.66	17.70	31000	20000	0.82		0.21		0.027		1.350		0.09		0.16		11.00	
10/10/2007	MB6	5.9	7.01	7.56	17.30	27000	28000	0.99		0.21		0.024		1.350		0.09		0.16		5.00	
10/11/2007	MB6	5.9	6.36	6.35	17.90	3200	3400	0.71		0.11		0.005	ND	0.005	ND	0.06		0.01	ND	1.00	
10/25/2007	MB6	6.1	6.79	6.32	15.00	70000	1000	2.00		0.50	ND	0.005	ND	0.62		0.22		0.29		NS	
n		23	23	21	23	23	23	11		11		11		11		11		11		10	
min		3.9	4.77	5.66	15.00	500	210	0.50		0.11		0.01		0.01	ļ	0.03		0.01		1.00	
mean*		15.0	6.87	6.90	19.33	10373	5202	0.78		0.41		0.01		1.26	ļ	0.08		0.12		7.50	
max		33.4	7.39	8.14	24.10	70000	38000	2.00		0.50		0.03		2.30		0.22		0.29		19.00	
std. dev.		9.3	0.5	0.78	2.32	19115	9935	0.46		0.15		0.01		0.614		0.06		0.082		6.65	

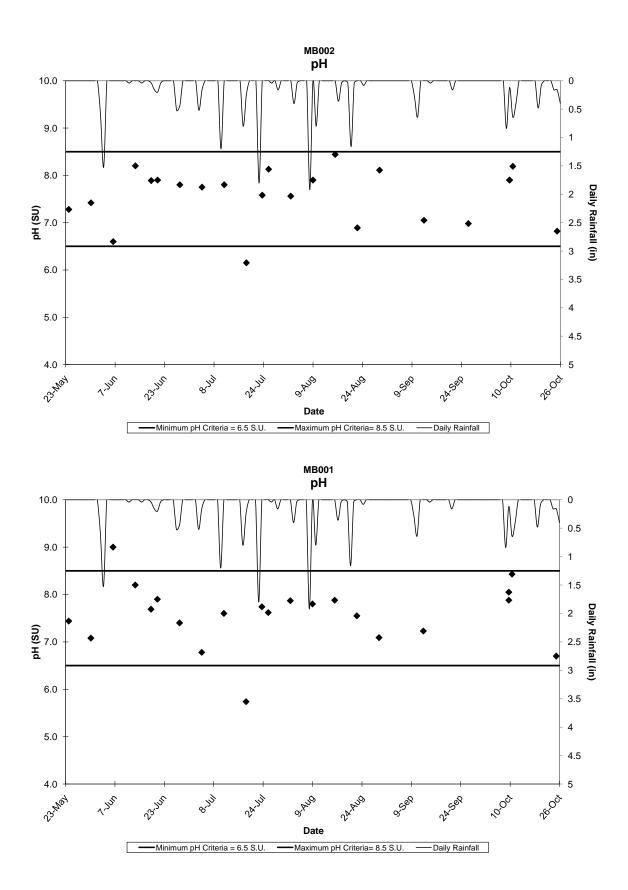
		Flow Rate	pН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH3- N		NO ₂ - N		NO3- N		PO ₄ ³⁻ Dissolved		ТР		TSS	
Date	Station ID	cfs	S.U.	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)	(1	mg/L)		(<i>mg/L</i>)	
5/24/2007	MB5	11.9	7.04	4.98	16.70	880	400	0.50	ND	0.50	ND	0.005	ND	1.200		0.03		0.07		5.00	
5/31/2007	MB5	3.5	6.48	2.86	17.80	580	570	0.50	ND	0.50	ND	0.005	ND	1.000		0.03		0.06		2.00	ND
6/7/2007	MB5	4.7	6.70	4.30	15.80	220	550	0.50	ND	0.50	ND	0.005	ND	0.900		0.04		0.12		2.00	ND
6/14/2007	MB5	6.1	6.97	NS	16.20	800	1900						B	acteria Sar	nnling	Only					ļ
6/19/2007	MB5	8.5	6.96	3.34	19.50	980	680				-	•	Di		npning	Olly					
6/21/2007	MB5	5.2	6.90	4.30	18.40	5900	2600	0.50	ND	0.50	ND	0.005	ND	1.100		0.05		0.01	ND	5.00	
6/28/2007	MB5	20.5	6.80	4.90	23.10	680	33000		-		-	•	Ba	cteria Sar	npling	Only					
7/5/2007	MB5	29.6	6.74	4.88	20.30	5100	6000	1.00		0.50	ND	0.005	ND	0.005	ND	0.04		0.10		16.00	
7/12/2007	MB5	16.9	6.90	NS	23.10	58000	20000														ļ
7/19/2007	MB5	16.9	6.30	5.13	21.10	3900	5700						Ba	acteria Sar	nnlinø	Only					
7/24/2007	MB5	20.2	6.35	6.13	20.00	3900	2900	2900													
7/26/2007	MB5	20.0	6.71	6.07	21.60	1060	540														
8/2/2007	MB5	19.4	7.12	5.91	22.40	600	420	0.50	ND	0.50	ND	0.005	ND	0.005	ND	0.29		0.35		2.00	ND
8/9/2007	MB5	22.2	7.00	7.00	23.00	1680	120			n		•	Ba	acteria Sar	npling	Only					_
8/16/2007	MB5	15.8	7.32	6.02	20.90	740	590	0.50	ND	0.50	ND	0.005	ND	2.800		0.27		0.30		2.00	ND
8/23/2007	MB5	16.8	6.92	6.86	17.05	1220	760														ļ
8/30/2007	MB5	2.4	6.67	5.36	19.90	124	460						Ba	acteria Sar	nnlinø	Only					
9/13/2007	MB5	16.7	6.77	5.05	17.50	660	1300						50	lotoria bai	p8	omy					
9/27/2007	MB5	3.4	6.40	4.00	18.70	106	780			n		•	1		1	r					
10/10/2007	MB5	12.6	7.03	3.25	18.50	33000	33000	0.99		0.15		0.020		0.700		0.05		0.12		3.00	
10/10/2007	MB5	5.2	6.85	3.86	18.30	26000	21000	1.16		0.21		0.018		0.630		NS		0.14		NS	
10/11/2007	MB5	2.0	6.88	4.64	17.30	5200	5100	0.71		0.10		0.005	ND	1.110		0.05		0.01	ND	6.00	
10/25/2007	MB5	5.4	6.63	3.21	14.80	1100	1700	0.50	ND	0.50	ND	0.005	ND	0.01	ND	0.01		0.10		2.00	ND
n		23	23	21	23	23	23	11		11		11		11		10		11		10	
min		2.0	6.30	2.86	14.80	106	120	0.50		0.10		0.01		0.01		0.01		0.01		2.00	
mean*		12.4	6.80	4.86	19.22	6627	6090	0.67		0.41		0.01		0.86		0.09		0.12		4.50	
max		29.6	7.32	7.00	23.10	58000	33000	1.16		0.50		0.02		2.80		0.29		0.35		16.00	
std. dev.		7.8	0.25	1.19	2.44	13896	10197	0.26		0.16		0.01		0.793		0.10		0.11		4.33	

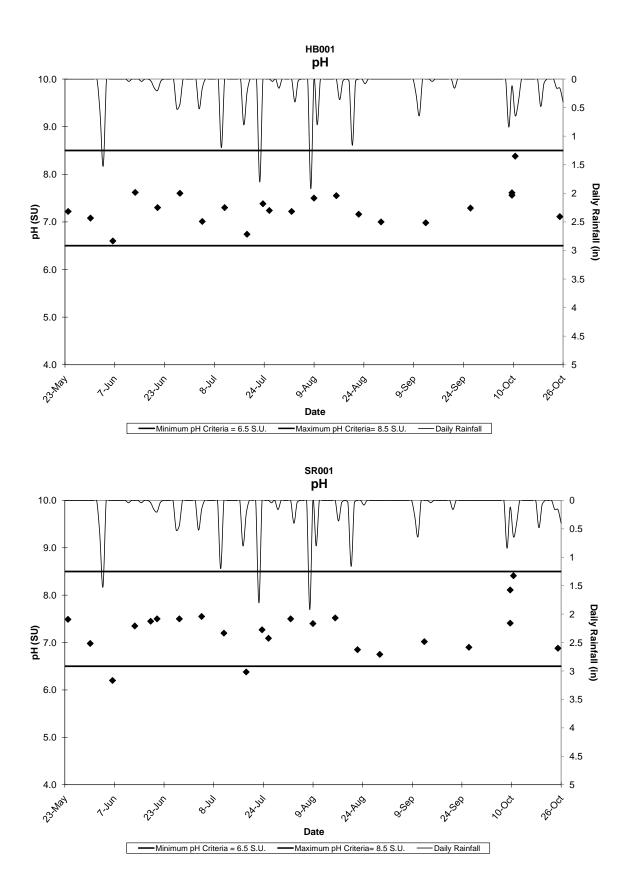
		Flow Rate	pН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH3- N		NO ₂ - N		NO ₃ - N		PO ₄ ³⁻ Dissolved		ТР		TSS	
Date	Station ID	cfs	<i>S.U.</i>	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)	
5/24/2007	MB4	8.7	7.17	5.63	16.90	1060	410	1.01		0.50	ND	0.005	ND	1.300		0.03		0.07		8.00	
5/31/2007	MB4	2.6	6.64	3.20	18.10	620	560	0.50	ND	0.50	ND	0.005	ND	1.200		0.03		0.06		6.00	
6/7/2007	MB4	5.5	7.20	4.30	15.80	3200	760	0.50	ND	0.50	ND	0.005	ND	1.100		0.04		0.11		5.00	
6/14/2007	MB4	5.7	7.15	NS	16.10	640	890						B	acteria Sar	nnling	Only					
6/19/2007	MB4	5.8	7.03	4.80	19.60	660	630		-			•			iipiine	, only					
6/21/2007	MB4	7.8	7.20	4.50	17.80	4000	2500	0.50	ND	0.50	ND	0.005	ND	1.300		0.01		0.07		2.00	ND
6/28/2007	MB4	16.5	6.90	5.30	23.10	580	11000		-			•	Ba	acteria Sar	npling	g Only					
7/5/2007	MB4	24.9	6.87	6.50	20.70	3800	3800	0.50	ND	0.50	ND	0.005	ND	0.660		0.03		0.11		22.00	
7/12/2007	MB4	12.1	6.90	NS	23.20	49000	24000														
7/19/2007	MB4	12.1	6.28	6.01	22.20	3400	8000						B	acteria Sar	noling	o Only					
7/24/2007	MB4	18.5	6.93	6.15	20.10	3400	2800	2800													
7/26/2007	MB4	18.9	6.85	6.50	21.00	1160	610														
8/2/2007	MB4	17.4	7.26	6.36	22.60	780	460	0.50	ND	0.50	ND	0.005	ND	0.660		0.29		0.35		2.00	ND
8/9/2007	MB4	22.6	7.20	5.60	23.40	1670	160			1		1	Ba	acteria Sar	npling	g Only					
8/16/2007	MB4	15.8	7.38	6.35	21.00	420	460	0.50	ND	0.50	ND	0.005	ND	2.900		0.26		0.03		4.00	
8/23/2007	MB4	17.8	6.91	6.96	17.40	900	680														ļ
8/30/2007	MB4	5.6	6.58	5.12	18.60	720	310						Ba	acteria Sar	npling	g Only					
9/13/2007	MB4	15.3	6.92	5.30	17.90	4400	2100								rc	, , , , , , , , , , , , , , , , , , ,					
9/27/2007	MB4	2.7	6.67	4.74	18.50	410	270		1	1	1	1	r	1		1	1	1			
10/10/2007	MB4	9.8	5.84	4.62	18.70	20000	25000	0.87		0.14		0.019		0.800		0.05		0.11		3.00	
10/10/2007	MB4	3.4	6.98	6.35	18.60	21000	19000	0.95		0.17		0.017		0.790		0.08		0.11		19.00	
10/11/2007	MB4	1.8	6.72	4.25	17.30	4200	4000	0.76		0.11		0.005	ND	1.350		0.05		0.01	ND	11.00	
10/25/2007	MB4	5.2	6.61	3.01	14.30	1160	2200	0.50	ND	0.50	ND	0.005	ND	0.52		0.01		0.08		2.00	ND
n		23	23	21	23	23	23	11		11		11		11		11		11		11	
min		1.8	5.84	3.01	14.30	410	160	0.50		0.11		0.01		0.52		0.01		0.01		2.00	
mean*		11.1	6.88	5.31	19.26	5530	4809	0.64		0.40		0.01		1.14		0.08		0.10		7.64	
max		24.9	7.38	6.96	23.40	49000	25000	1.01		0.50		0.02	<u> </u>	2.90		0.29		0.35		22.00	
std. dev.		6.9	0.35	1.09	2.55	10975	7606	0.21		0.17		0.01		0.654		0.10		0.09		6.98	

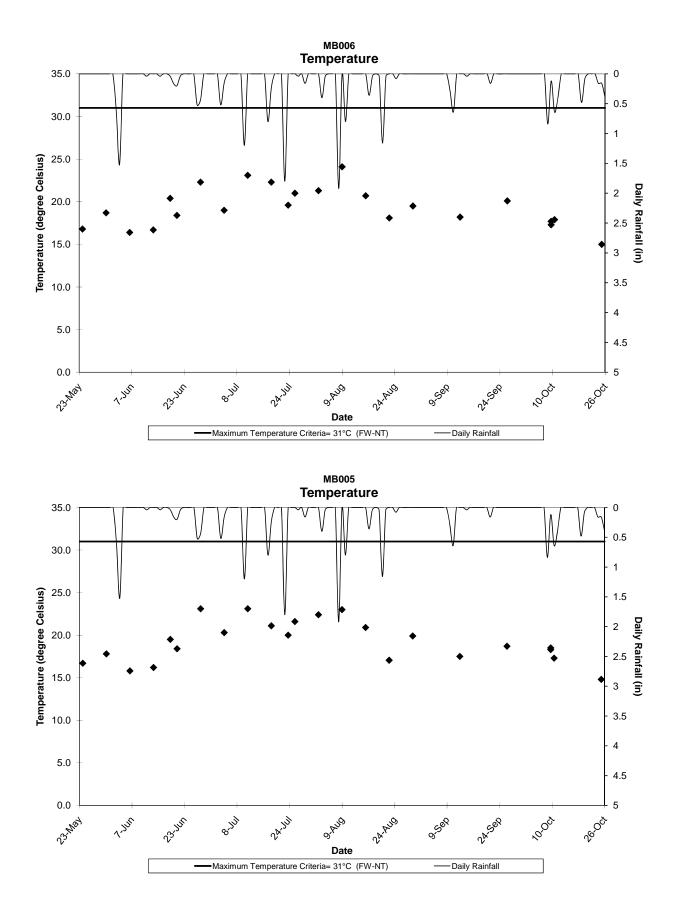
		Flow Rate	pН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH ₃ - N		NO ₂ - N		NO3- N		PO ₄ ³⁻ Dissolved		ТР		TSS	
Date	Station ID	cfs	S. U.	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(mg/L)		(<i>mg/L</i>)		(<i>mg/L</i>)		(mg/L)		(mg/L)		(<i>mg/L</i>)		(<i>mg/L</i>)	
5/24/2007	MB3	4.4	7.36	7.30	19.20	433	260	0.50	ND	0.50	ND	0.005	ND	1.100		0.03		0.05		2.00	
5/31/2007	MB3	1.2	7.06	4.85	21.10	840	530	0.50	ND	0.50	ND	0.005	ND	0.960		0.02		0.04		7.00	
6/7/2007	MB3	3.3	7.20	4.20	17.40	1000	540	0.50	ND	0.50	ND	0.005	ND	0.910		0.04		0.09		4.00	
6/14/2007	MB3	3.8	7.48	NS	17.40	580	740						F	acteria Sa	molina	Only					
6/19/2007	MB3	2.3	7.28	6.70	22.30	700	660						L	acteria 52	imping	, Only					
6/21/2007	MB3	2.5	7.50	6.40	19.40	3400	930	0.50	ND	0.50	ND	0.005	ND	0.730		0.03		0.09		13.00	
6/28/2007	MB3	7.2	7.60	7.00	25.20	120	5400		-				E	Bacteria Sa	ampling	Only					
7/5/2007	MB3	8.9	7.44	7.71	22.40	3600	4600	0.50	ND	0.50	ND	0.005	ND	0.005	ND	0.02		0.07		13.00	
7/12/2007	MB3	4.8	7.40	NS	23.20	44000	5100														ļ
7/19/2007	MB3	4.8	6.52	6.54	23.90	2000	2000						F	acteria Sa	ampling	, Only					
7/24/2007	MB3	6.5	7.21	7.71	20.80	2000	2200						-	actorna pr	pe	, 01119					
7/26/2007	MB3	1.9	6.99	6.75	22.40	760	340			1		1			1						
8/2/2007	MB3	1.5	7.45	6.64	23.30	310	160	0.50	ND	0.50	ND	0.005	ND	2.900		0.04		0.08		4.00	
8/9/2007	MB3	3.7	7.50	7.00	24.60	706	460		1	1	1	1	E	Bacteria Sa	ampling	; Only					
8/16/2007	MB3	1.2	7.48	6.43	21.80	260	270	0.50	ND	0.50	ND	0.005	ND	0.560		0.01	ND	0.03		22.00	
8/23/2007	MB3	2.3	7.13	6.91	18.80	1300	860														ļ
8/30/2007	MB3	1.3	6.80	7.87	20.30	627	580						E	acteria Sa	ampling	Only					
9/13/2007	MB3	1.9	6.87	4.63	17.50	4100	2000								1 0						
9/27/2007	MB3	0.8	6.72	4.98	19.50	420	260		1		1		1		1						
10/10/2007	MB3	3.2	6.94	5.72	20.00	7700	6600	0.74		0.09		0.008		0.260		0.01		0.06		3.00	
10/10/2007	MB3	1.3	6.99	5.22	19.90	9400	7800	0.75		0.11		0.008		0.270		0.01		0.05		2.00	
10/11/2007	MB3	0.4	6.52	6.09	17.90	870	790	0.54		0.08		0.005	ND	0.560		0.02		0.01	ND	1.00	
10/25/2007	MB3	2.2	6.67	6.32	14.40	120	560	0.50	ND	0.50	ND	0.005	ND	0.94		0.05		0.13		2.00	ND
n		23	23	21	23	23	23	11		11		11		11		11		11		11]
min		0.4	6.52	4.20	14.40	120	160	0.50		0.08		0.01		0.01		0.01		0.01		1.00	└───┨
mean*		3.1	7.14	6.33	20.55	3706	1897	0.55		0.39		0.01		0.84		0.03		0.06		6.64	ļ
max		8.9	7.60	7.87	25.20	44000	7800	0.75		0.50		0.01		2.90		0.05		0.13		22.00	└───┨
std. dev.		2.2	0.336	1.05	2.68	9106	2294	0.10		0.19		0.00		0.766		0.01		0.034		6.64	1


		Flow Rate	pН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH3- N		NO ₂ - N		NO3- N		PO ₄ ³⁻ Dissolved	ТР	r	TSS	
Date	Station ID	cfs	S.U.	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(mg/L)		(mg/L)	(<i>mg/L</i>)	(1	ng/L)	
5/24/2007	MB2	1.5	7.28	6.95	20.50	280	170	0.50	ND	0.50	ND	0.005	ND	1.100		0.03	0.06	,	7.00	
5/31/2007	MB2	0.8	7.42	4.90	23.50	2000	680	0.50	ND	0.50	ND	0.005	ND	1.000		0.02	0.05	1	6.00	
6/7/2007	MB2	0.9	6.60	6.30	19.60	2100	190	0.50	ND	0.50	ND	0.005	ND	0.800		0.03	0.11	1	1.00	
6/14/2007	MB2	3.0	8.20	NS	19.50	4400	460						Bac	teria Sam	nling ()	nlv				
6/19/2007	MB2	1.6	7.89	7.43	24.60	480	620						Dac	terra Sam	ping O	iny	 			
6/21/2007	MB2	1.0	7.90	6.80	6.80	1600	730	0.50	ND	0.50	ND	0.005	ND	0.480		0.04	0.07	9	9.00	
6/28/2007	MB2	1.9	7.80	7.90	25.20	60	1300						Bac	teria Sam	pling O	nly				
7/5/2007	MB2	4.5	7.75	8.12	23.30	230	280	2.50		0.50	ND	0.005	ND	0.005	ND	0.01	0.06	1	1.00	
7/12/2007	MB2	2.3	7.80	NS	24.90	12000	2200													
7/19/2007	MB2	2.3	6.15	6.04	25.20	493	230						Bac	teria Sam	nling ()	nlv				
7/24/2007	MB2	2.5	7.58	8.11	21.80	493	390						Dae	terra Samj	ping O	iiiy				
7/26/2007	MB2	0.8	8.13	8.15	24.90	156	60										 			
8/2/2007	MB2	0.8	7.56	5.90	26.50	106	120	0.50	ND	0.50	ND	0.005	ND	2.800		0.04	0.09	9	9.00	
8/9/2007	MB2	1.4	7.90	7.30	26.20	538	420						Bac	teria Sam	pling O	nly	 			
8/16/2007	MB2	0.4	8.44	6.93	24.50	800	370	0.50	ND	0.50	ND	0.005	ND	0.005	ND	0.01	0.05	1	0.00	
8/23/2007	MB2	1.1	6.89	6.60	20.00	230	190													
8/30/2007	MB2	0.3	8.11	7.78	23.50	680	140						Bac	teria Sam	nling ()	nlv				
9/13/2007	MB2	0.6	7.05	4.79	20.60	3200	540						Due		ping 0	iiiy				
9/27/2007	MB2	0.3	6.98	4.63	21.70	1600	150										 			
10/10/2007	MB2	2.2	7.90	0.21	21.20	420	470	0.81		0.09		0.005	ND	0.005	ND	0.01	0.05	4	4.00	
10/10/2007	MB2	2.0	7.90	0.19	21.20	340	350	0.82		0.09		0.005	ND	0.005	ND	0.02	0.05	4	4.00	
10/11/2007	MB2	0.1	8.19	0.24	19.70	350	370	0.92		0.08		0.006		0.270		0.02	0.08	1	5.00	
10/25/2007	MB2	2.1	6.82	6.11	16.30	1500	600	0.50	ND	0.50	ND	0.005	ND	1.10		0.06	0.13		2.00	ND
n		23	23	21	23	23	23	11		11		11		11		11	11		11	
min		0.1	6.15	0.19	6.80	60	60	0.50		0.08		0.01		0.01		0.01	0.05		2.00	
mean*		1.5	7.58	5.78	21.79	1481	480	0.78		0.39		0.01		0.69		0.03	0.07	:	8.91	
max		4.5	8.44	8.15	26.50	12000	2200	2.50		0.50		0.01		2.80		0.06	0.13	1	6.00	
std. dev.		1.0	0.58	2.56	4.18	2538	463	0.59		0.19		0.00		0.836		0.02	0.027	4	4.44	


		Flow Rate	pH	DO	Temperature	Fecal Coliform	E. coli	TKN		NH ₃ - N		NO ₂ - N		NO3- N		PO ₄ ³⁻ Dissolved		ТР		TSS	
Date	Station ID	cfs	S.U.	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(mg/L)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)	
5/24/2007	MB1	1.1	7.44	7.60	16.3	250	180	0.50	ND	0.50	ND	0.005	ND	1.800		0.04		0.05		2.00	
5/31/2007	MB1	0.3	7.08	7.85	17.9	200	170	0.50	ND	0.50	ND	0.005	ND	1.700		0.05		0.05		2.00	ND
6/7/2007	MB1	0.5	9.00	7.20	14.8	660	490	0.50	ND	0.50	ND	0.005	ND	1.800		0.05		0.14		2.00	ND
6/14/2007	MB1	0.2	8.20	NS	19.5	5400	560						Po	cteria Sam	nling ()nly					
6/19/2007	MB1	0.8	7.69	8.88	18.3	980	460						Ба	cteria Sam	pnng C	miy					
6/21/2007	MB1	0.4	7.90	9.30	15.6	460	360	0.50	ND	0.50	ND	0.005	ND	2.000		0.04		0.01	ND	2.00	ND
6/28/2007	MB1	0.6	7.40	7.90	21.2	210	4800						Ba	cteria Sam	pling C	Inly					
7/5/2007	MB1	1.4	6.78	7.94	19.8	4200	4000	0.50	ND	0.50	ND	0.005	ND	1.000	ND	0.06		0.12		17.00	
7/12/2007	MB1	1.0	7.60	NS	19.5	28000	5300														
7/19/2007	MB1	27.4	5.74	8.79	20.7	3500	3300						Ba	cteria Sam	nling ()nlv					
7/24/2007	MB1	0.9	7.74	9.55	17.6	3500	1600	1600													
7/26/2007	MB1	0.4	7.62	9.09	19.6	860	570	570													
8/2/2007	MB1	0.3	7.87	9.47	19.5	1040	480	0.50	ND	0.50	ND	0.005	ND	1.700		0.06		0.07		2.00	ND
8/9/2007	MB1	0.6	7.80	8.80	21.4	763	410						Ba	cteria Sam	pling C	nly		-			
8/16/2007	MB1	0.2	7.88	8.43	19.8	780	440	0.50	ND	0.50	ND	0.005	ND	1.900	ND	0.05		0.06		2.00	ND
8/23/2007	MB1	0.4	7.55	8.78	16.9	1060	480														
8/30/2007	MB1	0.1	7.09	9.37	18.4	1270	560						Ba	cteria Sam	nling (nly					
9/13/2007	MB1	0.1	7.23	7.01	15.6	720	610						Da	cterra Sam	pning C	niiy					
9/27/2007	MB1	0.0	7.34	6.24	19.4	370	16000														
10/10/2007	MB1	0.6	8.05	0.28	17.1	16000	11000	0.96		0.05		0.011		1.410		0.12		0.16		5.00	
10/10/2007	MB1	0.6	7.88	0.26	16.7	7000	780	0.67		0.06		0.012		1.420		0.12		0.15		3.00	
10/11/2007	MB1	0.0	8.43	1.35	16.7	1100	7800	0.50	ND	0.50	ND	0.005		1.530		0.08		0.09		1.00	
10/25/2007	MB1	0.1	6.70	6.30	12.9	1700	490	0.50	ND	0.50	ND	0.005	ND	1.00		0.06		0.12		2.00	ND
n		23	23	21	23	23	23	11		11		11		11		11		11		11	
min		0.0	5.74	0.26	12.90	200	170	0.50		0.05	<u> </u>	0.01		1.00		0.04		0.01		1.00	
mean*		1.7	7.57	7.16	18.05	3479	2645	0.56		0.42		0.01		1.57		0.07		0.09		3.64	
max		27.4	9.00	9.55	21.40	28000	16000	0.96		0.50		0.01		2.00		0.12		0.16		17.00	
std. dev.		5.6	0.65	2.91	2.17	6375	4052	0.14		0.18		0.00		0.337		0.03		0.049		4.54	


		Flow Rate	рН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH ₃ - N		NO ₂ - N		NO3- N		PO ₄ ³⁻ Dissolved		TP	TSS	
Date	Station ID	cfs	<i>S.U.</i>	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)	(mg/L)	
5/24/2007	HB1	45.3	7.22	7.60	19.10	3300	2600	0.50	ND	0.50	ND	0.005	ND	7.200		1.20		1.34	6.00	
5/31/2007	HB1	10.6	7.08	6.49	20.60	2100	780	2.20		1.40		0.005	ND	8.200		1.81		1.85	8.00	
6/7/2007	HB1	30.9	6.60	6.40	17.40	2200	660	2.30		0.50	ND	0.005	ND	9.400		1.70		2.10	2.00	ND
6/14/2007	HB1	54.4	7.62	NS	16.10	900	1800						Ba	cteria Sam	nling ()nlv				
6/19/2007	HB1	29.0	NS	NS	NS	5900	1400						D	eterra San	ipning C	Jilly	•			
6/21/2007	HB1	22.7	7.30	5.80	19.30	780	820	0.50	ND	0.50	ND	0.005	ND	13.000		2.00		2.20	2.00	ND
6/28/2007	HB1	45.7	7.60	7.20	23.20	200	5200						Ba	cteria Sam	pling (Dnly	•			
7/5/2007	HB1	43.2	7.01	8.79	21.70	1160	2700	0.50	ND	0.50	ND	0.005	ND	0.005	ND	0.80		0.91	10.00	
7/12/2007	HB1	75.8	7.30	NS	22.10	41000	NS													
7/19/2007	HB1	75.2	6.74	6.37	22.50	5900	3700						Ba	cteria Sam	nling ()nlv				
7/24/2007	HB1	69.3	7.38	9.08	20.00	5900	2800						Dt	eterra Ban	iping (Jiiry				
7/26/2007	HB1	28.9	7.24	7.77	22.20	1200	1700		-		-				-					
8/2/2007	HB1	22.5	7.22	7.54	23.30	800	430	1.20		0.50	ND	0.005	ND	12.000		2.10		1.80	2.00	ND
8/9/2007	HB1	43.0	7.50	7.50	24.00	1420	430				-		Ba	cteria Sam	pling C	Only				
8/16/2007	HB1	19.7	7.55	7.25	22.60	860	410	0.50	ND	0.50	ND	0.005	ND	11.000	ND	1.90		2.20	10.00	
8/23/2007	HB1	19.7	7.16	7.74	19.60	880	640													
8/30/2007	HB1	20.0	7.00	6.96	21.80	1030	1800						Ba	cteria Sam	nling ()nlv				
9/13/2007	HB1	22.3	6.98	6.23	19.40	2700	840						Dt	eterna ban	ipinig c	, iii y				
9/27/2007	HB1	15.9	7.29	4.91	22.10	880	560										•			
10/10/2007	HB1	NS	7.61	0.23	19.10	26000	22000	1.30		0.13		0.061		5.410		0.94		1.05	5.00	
10/10/2007	HB1	NS	7.56	0.23	19.00	21000	16000	0.93		0.13		0.064		5.640		0.98		1.03	4.00	
10/11/2007	HB1	NS	8.38	2.10	19.20	1100	1600	NS		NS		NS		NS		NS		NS	NS	
10/25/2007	HB1	19.5	7.11	6.67	16.70	40000	440	1.40		0.50	ND	0.005	ND	14.00		2.20		1.80	2.00	ND
n		20	22	20	22	23	22	10		10		10		10		10		10	10	
min		10.6	6.60	0.23	16.10	200	410	0.50		0.13		0.01		0.01		0.80		0.91	2.00	
mean*		35.7	7.29	6.14	20.50	7270	3150	1.13		0.52		0.02		8.59		1.56		1.63	5.10	
max		75.8	8.38	9.08	24.00	41000	22000	2.30		1.40		0.06		14.00		2.20		2.20	10.00	
std. dev.		20.0	0.37	2.49	2.20	12295	5354	0.69		0.35		0.02		4.235		0.53		0.5029	3.28	


		Flow Rate	pН	DO	Temperature	Fecal Coliform	E. coli	TKN		NH3- N		NO ₂ - N		NO ₃ - N		PO ₄ ³⁻ Dissolved		ТР	TSS	
Date	Station ID	cfs	<i>S.U</i> .	(<i>mg/L</i>)	deg C	col/100 ml	col/100 ml	(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)		(<i>mg/L</i>)	(<i>mg/L</i>)	
5/24/2007	SR1	25.1	7.49	8.34	17.90	820	440	0.50	ND	0.50	ND	0.005	ND	1.800		0.02		0.03	4.00	
5/31/2007	SR1	5.8	6.98	7.21	18.70	700	380	0.50	ND	0.50	ND	0.005	ND	1.800		0.03		0.04	2.00	ND
6/7/2007	SR1	12.0	6.20	7.90	16.00	2200	590	0.50	ND	0.50	ND	0.005	ND	1.600		0.03		0.11	2.00	ND
6/14/2007	SR1	17.0	7.35	NS	17.60	1060	1100						Ba	cteria San	mlina	Only				
6/19/2007	SR1	12.8	7.45	7.40	22.80	4900	1800						Da		ipning	Olliy				
6/21/2007	SR1	13.1	7.50	7.00	17.80	3900	790	0.50	ND	0.50	ND	0.005	ND	1.800		0.03		0.04	2.00	ND
6/28/2007	SR1	27.2	7.50	7.70	21.80	170	6100						Ba	cteria San	pling	Only				
7/5/2007	SR1	34.2	7.55	8.50	19.30	3700	3700	0.50	ND	0.50	ND	0.005	ND	1.400		0.03		0.07	7.00	
7/12/2007	SR1	41.0	7.20	NS	21.40	39000	NS													ļ
7/19/2007	SR1	41.0	6.38	8.42	21.80	5800	4100						Ba	cteria San	mlino	Only				
7/24/2007	SR1	43.6	7.27	8.76	18.50	5800	3500						Du	eterra Ban	iping	Olly				
7/26/2007	SR1	12.2	7.09	8.04	20.60	1020	520													
8/2/2007	SR1	11.5	7.50	8.52	21.90	110	390	0.50	ND	0.50	ND	0.005	ND	1.400		0.01	ND	0.01	2.00	ND
8/9/2007	SR1	23.5	7.40	7.40	22.70	1270	390						Ba	cteria San	pling	Only				
8/16/2007	SR1	9.3	7.52	8.29	20.40	553	430	0.50	ND	0.50	ND	0.005	ND	1.600		0.02		0.06	2.00	ND
8/23/2007	SR1	9.3	6.85	8.64	17.10	900	460													
8/30/2007	SR1	6.8	6.75	8.11	19.20	420	430						Ba	cteria San	mlino	Only				
9/13/2007	SR1	8.5	7.02	4.99	16.90	2000	630						Da	eterra Ban	iping	Olly				
9/27/2007	SR1	4.6	6.90	6.02	19.20	820	480													
10/10/2007	SR1	NS	8.11	0.28	17.50	33000	23000	0.91		0.09		0.018		1.490		0.07		0.12	10.00	
10/10/2007	SR1	NS	7.41	0.26	17.10	12000	9400	0.94		0.13		0.018		1.500		0.08		0.13	10.00	
10/11/2007	SR1	NS	8.41	2.15	16.90	3000	2600	0.52		0.07		0.008		1.560		0.04		0.07	2.00	
10/25/2007	SR1	7.6	6.88	6.54	13.80	4500	1700	0.50	ND	0.50	ND	0.005	ND	1.30		0.02		0.08	2.00	ND
n		20	23	21	23	23	22	11		11		11		11		11		11	11	
min		4.6	6.20	0.26	13.80	110	380	0.50		0.07		0.01		1.30		0.01		0.01	2.00	
mean*		18.3	7.25	6.69	19.00	5550	2860	0.58		0.39		0.01		1.57		0.03		0.07	4.09	
max		43.6	8.41	8.76	22.80	39000	23000	0.94		0.50		0.02		1.80		0.08		0.13	10.00	
std. dev.		12.8	0.49	2.62	2.35	10025	5045	0.17		0.19		0.01		0.174		0.02		0.0386	3.30	


Appendix E: Presentation of Graphed Instream Water Quality Data

