

Draft

Impervious Cover Reduction Action Plan for Watchung Borough, Somerset County, New Jersey

Prepared for Watchung Borough by the Rutgers Cooperative Extension Water Resources Program

September 30, 2015

Table of Contents

Introduction	1
Methodology	1
Green Infrastructure Practices	
Potential Project Sites	
Conclusion	

Attachment: Climate Resilient Green Infrastructure

- a. Overview Map of the Project
- b. Green Infrastructure Sites
- c. Proposed Green Infrastructure Concepts
- d. Summary of Existing Conditions
- e. Summary of Proposed Green Infrastructure Practices

Introduction

Located in Somerset County in central New Jersey, Watchung Borough covers approximately 6.0 square miles. Figures 1 and 2 illustrate that Watchung Borough is dominated by urban land uses. A total of 62.6% of the municipality's land use is classified as urban. Of the urban land in Watchung Borough, rural residential is the dominant land use (Figure 3).

The New Jersey Department of Environmental Protection's (NJDEP) 2007 land use/land cover geographical information system (GIS) data layer categorizes Watchung Borough into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Watchung Borough. Based upon the 2007 NJDEP land use/land cover data, approximately 16.7% of Watchung Borough has impervious cover. This level of impervious cover suggests that the streams in Watchung Borough are likely impacted.¹

Methodology

Watchung Borough contains portions of two subwatersheds (Figure 4). For this impervious cover reduction action plan, projects have been identified in each of these watersheds. Initially, aerial imagery was used to identify potential project sites that contain extensive impervious cover. Field visits were then conducted at each of these potential project sites to determine if a viable option exists to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the site visit, appropriate green infrastructure practices for the site were determined. Sites that already had stormwater management practices in place were not considered.

¹ Caraco, D., R. Claytor, P. Hinkle, H. Kwon, T. Schueler, C. Swann, S. Vysotsky, and J. Zielinski. 1998. Rapid Watershed Planning Handbook. A Comprehensive Guide for Managing Urbanizing Watersheds. Prepared by Center For Watershed Protection, Ellicott City, MD. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Region V. October 1998

Figure 1: Map illustrating the land use in Watchung Borough

Figure 2: Pie chart illustrating the land use in Watchung Borough

Figure 3: Pie chart illustrating the various types of urban land use in Watchung Borough

Figure 4: Map of the subwatersheds in Watchung Borough

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2007 NJDEP land use/land cover database. For impervious areas, runoff volumes were determined for the water quality design storm (1.25 inches of rain over two-hours) and for the annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Watchung Borough using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area. Several key soil parameters were examined (e.g., natural drainage class, saturated hydraulic conductivity of the most limiting soil layer (K_{sat}), depth to water table, and hydrologic soil group) to evaluate the suitability of each site's soil for green infrastructure practices. In cases where multiple soil types were encountered, the key soil parameters were examined for each soil type expected at a site.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2-year design storm, enabling these practices to capture 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

Land Cover	TP load (lbs/acre/yr)	TN load (lbs/acre/yr)	TSS load (lbs/acre/yr)
High, Medium Density Residential	1.4	15	140
Low Density, Rural Residential	0.6	5	100
Commercial	2.1	22	200
Industrial	1.5	16	200
Urban, Mixed Urban, Other Urban	1.0	10	120
Agriculture	1.3	10	300
Forest, Water, Wetlands	0.1	3	40
Barrenland/Transitional Area	0.5	5	60

Table 1: Aerial Loading Coefficients²

² New Jersey Department of Environmental Protection (NJDEP), Stormwater Best Management Practice Manual, 2004.

Green Infrastructure Practices

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principal, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these practices can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits³. A wide range of green infrastructure practices have been evaluated for the potential project sites in Watchung Borough. Each practice is discussed below.

Disconnected downspouts

This is often referred to as simple disconnection. A downspout is simply disconnected, prevented from draining directly to the roadway or storm sewer system, and directed to discharge water to a pervious area (i.e., lawn).

Pervious pavements

There are several types of permeable pavement systems including porous asphalt, pervious concrete, permeable pavers, and grass pavers. These surfaces are hard and support vehicle traffic but also allow water to infiltrate through the surface. They have an underlying stone layer to store stormwater runoff and allow it to slowly seep into the ground.

³ United States Environmental Protection Agency (USEPA), 2013. Watershed Assessment, Tracking, and Environmental Results, New Jersey Water Quality Assessment Report. <u>http://ofmpub.epa.gov/waters10/attains_state.control?p_state=NJ</u>

Bioretention systems/rain gardens

These are landscaped features that are designed to capture, treat, and infiltrate stormwater runoff. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating a wildlife habitat while managing stormwater runoff. Bioretention systems also can be used in soils that do not quickly infiltrate by incorporating an underdrain into the system.

Downspout planter boxes

These are wooden boxes with plants installed at the base of a downspout that provide an opportunity to beneficially reuse rooftop runoff.

Rainwater harvesting systems (cistern or rain barrel)

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.

Bioswale

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and providing water an opportunity to infiltrate.

Stormwater planters

Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Many of these planters are designed to allow the water to infiltrate into the ground while others are designed simply to filter the water and convey it back into the stormwater sewer system.

Tree filter boxes

These are pre-manufactured concrete boxes that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.

Potential Project Sites

Attachment 1 contains information on potential project sites where green infrastructure practices could be installed. The recommended green infrastructure practice and the drainage area that the green infrastructure practice can treat are identified for each potential project site. For each practice, the recharge potential, TSS removal potential, maximum volume reduction potential per storm, and the peak reduction potential are provided. This information is also provided so that proposed development projects that cannot satisfy the New Jersey stormwater management requirements for major development can use one of the identified projects to offset a stormwater management deficit.⁴

⁴ New Jersey Administrative Code, N.J.A.C. 7:8, Stormwater Management, Statutory Authority: N.J.S.A. 12:5-3, 13:1D-1 et seq., 13:9A-1 et seq., 13:19-1 et seq., 40:55D-93 to 99, 58:4-1 et seq., 58:10A-1 et seq., 58:11A-1 et seq. and 58:16A-50 et seq., *Date last amended: April 19, 2010.*

Conclusion

This impervious cover reduction action plan is meant to provide the municipality with a blueprint for implementing green infrastructure practices that will reduce the impact of stormwater runoff from impervious surfaces. These projects can be implemented by a wide variety of people such as boy scouts, girl scouts, school groups, faith-based groups, social groups, watershed groups, and other community groups.

Additionally, development projects that are in need of providing off-site compensation for stormwater impacts can use the projects in this plan as a starting point. The municipality can quickly convert this impervious cover reduction action plan into a stormwater mitigation plan and incorporate it into the municipal stormwater control ordinance.

ATTACHMENT: CLIMATE RESILIENT GREEN INFRASTRUCTURE

Contents:

- a. Overview Map of the Project
- b. Green Infrastructure Sites
- c. Proposed Green Infrastructure Concepts
- d. Summary of Existing Conditions
- e. Summary of Proposed Green Infrastructure Practices

a. Overview Map of the Project

Summit Springfield Berkeley lountainside Heights Watchung Fanwood Warren North Plainfield Scotch Plains Green Brook ____Plainfield Bridgewater Dunellen Middlesex Raritan Readington Bound South Plainfield Borough Brook Franklin Somerville Woodbridge Manville Pouth Branchburg Metuchen Piscataway Perth Brook Ambo Edison/ Flemington Highland Hillsborough Franklin Parl South Township New Amboy Raritan Brunswick Township Milltown South Delaware North River Brunswick East Amwell East Brunswick **Old Bridge** Spotswood South Brunswick Helmetta Jamesburg Marlboro Monroe Englishtown Freehold Manalapan / Borough Millstone Township Freehold Township 10 Miles

WATCHUNG: CLIMATE RESILIENT GREEN INFRASTRUCTURE FOR THE RARITAN BASIN

b. Green Infrastructure Sites

WATCHUNG: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE GREEN BROOK SUBWATERSHED:

1. Mount Saint Mary Academy

SITES WITHIN THE STONY BROOK SUBWATERSHED:

- 2. **Bayberry School** Borough of Watchung Police 3. Department Donald R Scott Public Works 4. Center 5. Fire Department St. Mary's Stony Hill Youth 6. Group 7. **US Post Office** Valley View School 8. 9. Watchung Borough Administration 10. Watchung Lake Dev 11. Watchung Public Library
 - 12. Wilson Memorial Church

c. Proposed Green Infrastructure Concepts

MOUNT SAINT MARY ACADEMY: GYMNASIUM

Subwatershed:	Green Brook
Site Area:	2,505,968 sq. ft.
Address:	1645 U.S. Highway 22 Watchung, NJ 07069
Block and Lot:	Block 6402, Lot 5

Rows of parking spaces and a picnic area next to the bus parking can be replaced with pervious pavement to infiltrate runoff. Rain gardens and bioswales can also capture, treat and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

The tables below represent existing conditions and recommendations for all of Mount Saint Mary Academy.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
19	481,964	23.2	243.4	2,212.9	0.376	13.22	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.221	37	16,187	0.61	2,650	\$13,250
Bioswales	0.037	6	2,708	0.10	380	\$1,900
Pervious pavements	0.766	128	56,220	2.11	8,020	\$200,500

Mount Saint Mary Academy: Gymnasium

- pervious pavements
 - bioretention / rain gardens
- bioswales
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

MOUNT SAINT MARY ACADEMY: PARKING LOT NEAR TRACK

Subwatershed:	Green Brook
Site Area:	2,505,968 sq. ft.
Address:	1645 U.S. Highway 22 Watchung, NJ 07069
Block and Lot:	Block 6402, Lot 5

Runoff from the parking lot currently drains toward the road. Parking spaces can be replaced with porous asphalt to capture and infiltrate stormwater. A rain garden can also capture, treat and infiltrate runoff on the site. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Please refer to the previous page for site and green infrastructure calculations for the Mount Saint Mary Academy.

Mount Saint Mary Academy: Parking Lot

- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

50'

BAYBERRY SCHOOL

Subwatershed:	Stony Brook
Site Area:	614,599 sq. ft.
Address:	113 Bayberry Lane Watchung, NJ 07069
Block and Lot:	Block 6909, Lot 7

Stormwater is currently directed into a detention basin. The detention basin can be converted into a bioretention system to promote groundwater recharge and TSS removal. A smaller bioretention system can also be implemented in the northeast to capture, treat and infiltrate runoff. Additionally, parking spots can be replaced with porous asphalt to capture and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
28	173,767	8.4	87.8	797.8	0.135	4.77	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.929	156	68,173	2.56	7,715	\$38,575
Pervious pavements	0.203	34	14,915	0.56	3,680	\$92,000

Bayberry School

- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

BOROUGH OF WATCHUNG POLICE DEPARTMENT

Subwatershed:	Stony Brook
Site Area:	280,504 sq. ft.
Address:	840 Somerset Street #1 Watchung, NJ 07069
Block and Lot:	Block 4501, Lot 1.08

Parking spots can be replaced with porous asphalt to capture and infiltrate stormwater. Downspouts can be redirected into a cistern on the southeast side of the building to harvest rain water. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
37	104,725	5.0	52.9	480.8	0.082	2.87	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.254	42	18,618	0.70	5,485	\$137,125
Rainwater harvesting systems	0.045	7	1,500	0.12	1500 (gal)	\$3,000

Borough of Watchung Police Department

- disconnected downspouts
- pervious pavements
- rainwater harvesting
- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

DONALD R. SCOTT PUBLIC WORKS CENTER

Subwatershed:	Stony Brook
Site Area:	111,746 sq. ft.
Address:	880 Somerset Street Watchung, NJ 07069
Block and Lot:	Block 4501, Lot 1.07

Parking spots west of the building can be replaced with porous asphalt to capture and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervious Cover		Exis Imperv	sting Loads f vious Cover	from (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
28	30,736	1.5	15.5	141.1	0.024	0.84

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.114	19	8,385	0.32	1,185	\$29,625

Donald R. Scott Public Works Center

- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

FIRE DEPARTMENT

Subwatershed:	Stony Brook
Site Area:	49,766 sq. ft.
Address:	57 Mountain Boulevard Watchung, NJ 07069
Block and Lot:	Block 1604, Lot 14

Parking spots south of the building can be replaced with porous asphalt to capture and infiltrate stormwater. A wide drive way east of the building can be de-paved or converted into pervious pavement. Additionally, a rain garden can be installed beside the parking lot to capture, treat and infiltrate runoff. A preliminary soil assessment suggests that soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
75	37,325	1.8	18.9	171.4	0.029	1.02

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.056	9	4,084	0.15	540	\$2,700
Pervious pavements	0.147	25	10,794	0.41	2,115	\$52,875

Fire Department

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

SAINT MARY'S STONY HILL YOUTH GROUP

Subwatershed:	Stony Brook
Site Area:	1,072,613 sq. ft.
Address:	225 Mountain Boulevard Watchung, NJ 07069
Block and Lot:	Block 1201, Lot 7

Parking spots south of the building can be replaced with porous asphalt to capture and infiltrate stormwater. Several opportunities exist to disconnect downspouts into rain barrels, planting beds, or rain gardens. Rain gardens can also be installed to capture parking lot runoff. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
17	182,793	8.8	92.3	839.3	0.142	5.01

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.094	16	6,920	0.26	940	\$4,700
Pervious pavements	0.076	13	5,543	0.21	1,040	\$26,000
Rainwater harvesting systems	0.001	0	55	0.00	55 (gal)	\$250

St. Mary's Stony Hill Youth Group

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- rainwater harvesting
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

US POST OFFICE

Subwatershed:	Stony Brook
Site Area:	37,922 sq. ft.
Address:	475 Watchung Avenue Watchung, NJ 07069
Block and Lot:	Block 4701, Lot 5

Parking spots south of the building can be replaced with porous asphalt to capture and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	ting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from In	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
90	34,130	1.6	17.2	156.7	0.027	0.94

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.538	90	39,494	1.48	3,645	\$91,125

US Post Office

- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

VALLEY VIEW SCHOOL

Subwatershed:	Stony Brook
Site Area:	245,131 sq. ft.
Address:	50 Valleyview Road Watchung, NJ 07069
Block and Lot:	Block 3101, Lot 6

Parking spots and a basketball court can be replaced with pervious pavement to capture and infiltrate stormwater. Pedestrian walkways around the school can be replaced with pervious concrete to capture stormwater as well. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
43	105,765	5.1	53.4	485.6	0.082	2.90

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.559	94	40,990	1.54	7,040	\$176,000

Valley View School

- disconnected downspouts
- pervious pavements
- drainage areas
- [] property line
 - 2012 Aerial: NJOIT, OGIS

WATCHUNG BOROUGH ADMINISTRATION

Subwatershed:	Stony Brook
Site Area:	70,046 sq. ft.
Address:	15 Mountain Boulevard Watchung, NJ 07069
Block and Lot:	Block 1604, Lot 15.01

Stormwater is currently directed to existing rain barrels and catch basins throughout the site. The paved picnic area beside the building can be replaced with permeable pavers to capture and infiltrate stormwater. Parking spaces can be replaced with porous asphalt to capture and infiltrate runoff as well. A preliminary soil assessment suggests that soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)				Runoff Volume from In	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''		
67	46,720	2.3	23.6	214.5	0.036	1.28		

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.238	40	17,481	0.66	2,280	\$57,000

Watchung Boro Administration

- disconnected downspouts
- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

WATCHUNG LAKE DEV

Subwatershed:	Stony Brook
Site Area:	854,826 sq. ft.
Address:	Watchung, NJ 07069
Block and Lot:	Block 2401, Lot 1.01

Parking spots by the lake can be replaced with porous asphalt to capture and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining soil suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
6	47,638	2.3	24.1	218.7	0.037	1.31

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.198	33	14,564	0.55	1,375	\$34,375

Watchung Lake Dev

- pervious pavements
- drainage areas
- **[]** property line
- 2012 Aerial: NJOIT, OGIS

WATCHUNG PUBLIC LIBRARY

Subwatershed:	Stony Brook
Site Area:	61,575 sq. ft.
Address:	12 Stirling Road Watchung, NJ 07069
Block and Lot:	Block 4401, Lot 7

Stormwater is currently directed into existing rain barrels and catch basins. Parking spots and sidewalks south of the building can be replaced with pervious pavement to capture and infiltrate stormwater. The private parking area west of the building can also be replaced with permeable pavers to capture and infiltrate roof runoff. A preliminary soil assessment suggests that soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	from (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
75	46,181	2.2	23.3	212.0	0.036	1.27	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavements	0.233	39	17,107	0.64	3,345	\$83,625

Watchung Public Library

- disconnected downspouts
- pervious pavements
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

WILSON MEMORIAL CHURCH

Subwatershed:	Stony Brook
Site Area:	72,866 sq. ft.
Address:	7 Valley Road Watchung, NJ 07069
Block and Lot:	Block 4301, Lot 1

Parking spaces can be replaced with porous asphalt to capture and infiltrate stormwater. Sidewalks can be replaced with pervious pavement to capture stormwater as well. Rain gardens can capture, treat and infiltrate runoff from the roof. A preliminary soil assessment suggests that soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from In	pervious Cover (Mgal)	
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
75	54,650	2.6	27.6	250.9	0.043	1.50	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.071	12	5,243	0.20	700	\$3,500
Pervious pavements	0.082	14	6,051	0.23	1,500	\$37,500

Wilson Memorial Church

- disconnected downspouts
- pervious pavements
 - bioretention / rain gardens
- drainage areas
- [] property line
- 2012 Aerial: NJOIT, OGIS

d. Summary of Existing Conditions

Summary of Existing Site Conditions

										Runoff Volumes fr	rom I.C.	
					Exis	ting Annual	Loads		I.C.	I.C.	Water Quality Storm	
Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Block	Lot	TP	TN	TSS	I.C.	Area	Area	(1.25" over 2-hours)	Annual
	(ac)	(SF)			(lb/yr)	(lb/yr)	(lb/yr)	%	(ac)	(SF)	(Mgal)	(Mgal)
GREEN BROOK SUBWATERSHED	57.53	2,505,968			23.2	243.4	2,212.9		11.06	481,964	0.376	13.22
Mount Saint Mary Academy Total Site Info	57.53	2,505,968	6402	5	23.2	243.4	2,212.9	19	11.06	481,964	0.376	13.22
STONY BROOK SUBWATERSHED	79.70	3,471,594			41.7	436.6	3,968.9		19.84	864,429	0.674	23.71
Bayberry School Total Site Info	14.11	614,599	6909	7	8.4	87.8	797.8	28	3.99	173,767	0.135	4.77
Borough of Watchung Police Department Total Site Info	6.44	280,504	4501	1.08	5.0	52.9	480.8	37	2.40	104,725	0.082	2.87
Donald R. Scott Public Works Center Total Site Info	2.57	111,746	4501	1.07	1.5	15.5	141.1	28	0.71	30,736	0.024	0.84
Fire Department Total Site Info	1.14	49,766	1604	14	1.8	18.9	171.4	75	0.86	37,325	0.029	1.02
Saint Mary's Stony Hill Youth Group Total Site Info	24.62	1,072,613	1201	7	8.8	92.3	839.3	17	4.20	182,793	0.142	5.01
US Post Office Total Site Info	0.87	37,922	4701	5	1.6	17.2	156.7	90	0.78	34,130	0.027	0.94
Valley View School Total Site Info	5.63	245,131	3101	6	5.1	53.4	485.6	43	2.43	105,765	0.082	2.90
Watchung Boro Administration Total Site Info	1.61	70,046	1604	15.01	2.3	23.6	214.5	67	1.07	46,720	0.036	1.28
Watchung Lake Dev Total Site Info	19.62	854,826	2401	1.01	2.3	24.1	218.7	6	1.09	47,638	0.037	1.31
Watchung Public Library Total Site Info	1.41	61,575	4401	7	2.2	23.3	212.0	75	1.06	46,181	0.036	1.27

Summary of Existing Site Conditions

											Runoff Volumes f	rom I.C.
					Exi	sting Annual	Loads		I.C.	I.C.	Water Quality Storm	
Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Block	Lot	TP	TN	TSS	I.C.	Area	Area	(1.25" over 2-hours)	Annual
	(ac)	(SF)			(lb/yr)	(lb/yr)	(lb/yr)	%	(ac)	(SF)	(Mgal)	(Mgal)
												_
Wilson Memorial Church												
Total Site Info	1.67	72,866	4301	1	2.6	27.6	250.9	75	1.25	54,650	0.043	1.50

e. Summary of Proposed Green Infrastructure Practices

Summary of Propsed Green Infrastructure Practices

		Potential Management Area			Max Volume Peak Discharg			;	
		I		Recharge	TSS Removal	Reduction	Reduction	Size of	
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	
	GREEN BROOK SUBWATERSHED	39,288	0.90	1.024	171	75,115	2.82	11,050	
1	Mount Saint Mary Academy								
-	Bioretention systems/rain gardens	8.466	0.19	0.221	37	16.187	0.61	2.650	
	Bioswales	1.416	0.03	0.037	6	2.708	0.10	380	
	Pervious pavements	29,406	0.68	0.766	128	56.220	2.11	8.020	
	Total Site Info	39,288	0.90	1.024	171	75,115	2.82	11,050	
	STONY BROOK SUBWATERSHED	147,366	3.38	3.840	643	279,917	10.59	44,140	
2	Baybarry Sabaal								
L	Bioretention systems/rain gardens	35 660	0.82	0.929	156	68 173	2 56	7 715	
	Direction systems rain gardens	7 800	0.82	0.929	3/	1/ 915	2.50	3 680	
	Total Site Info	43,460	1.00	1.132	190	83,088	3.12	11,395	
3	Borough of Watchung Police Department								
	Pervious pavements	9,737	0.22	0.254	42	18,618	0.70	5,485	
	Rainwater harvesting systems	1,718	0.04	0.045	7	1,500	0.12	1,500	
	Total Site Info	11,455	0.26	0.298	50	20,118	0.82	6,985	
4	Donald R. Scott Public Works Center								
	Pervious pavements	4,387	0.10	0.114	19	8,385	0.32	1,185	
	Total Site Info	4,387	0.10	0.114	19	8,385	0.32	1,185	
5	Fire Department								
	Bioretention systems/rain gardens	2,136	0.05	0.056	9	4,084	0.15	540	
	Pervious pavements	5,646	0.13	0.147	25	10,794	0.41	2,115	
	Total Site Info	7,781	0.18	0.203	34	14,878	0.56	2,655	
6	Saint Mary's Stony Hill Youth Group								
	Bioretention systems/rain gardens	3,620	0.08	0.094	16	6,920	0.26	940	
	Pervious pavements	2,900	0.07	0.076	13	5,543	0.21	1,040	
	Rainwater harvesting systems	53	0.00	0.001	0	55	0.00	55	
	Total Site Info	6,573	0.15	0.171	29	12,518	0.47	2,035	

ze of SMP	Unit Cost	Unit	Total Cost	I.C. Treated
SF)	(\$)		(\$)	%
,050			\$215,650	8.2%
.650	5	SF	\$13.250	1.8%
380	5	SF	\$1,900	0.3%
,020	25	SF	\$200,500	6.1%
,050			\$215,650	8.2%
,140			\$869,975	17.0%
,715	5	SF	\$38,575	20.5%
,680	25	SF	\$92,000	4.5%
,395			\$130,575	25.0%
,485	25	SF	\$137,125	9.3%
,500	2	GAL.	\$3,000	1.6%
,985			\$140,125	10.9%
,185	25	SF	\$29,625	14.3%
,185			\$29,625	14.3%
540	5	SF	\$2,700	5.7%
,115	25	SF	\$52,875	15.1%
,655			\$55,575	20.8%
940	5	SF	\$4,700	2.0%
,040	25	SF	\$26,000	1.6%
55	1	BARREL	\$250	0.0%
,035			\$30,950	3.6%

Summary of Propsed Green Infrastructure Practices Potential Management Area Max Volume Peak Discharge

				Recharge	TSS Removal	Reduction	Reduction	Size of
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)
7	US Post Office							
	Pervious pavements	20,656	0.47	0.538	90	39,494	1.48	3,645
	Total Site Info	20,656	0.47	0.538	90	39,494	1.48	3,645
8	Valley View School							
	Pervious pavements	21,441	0.49	0.559	94	40,990	1.54	7,040
	Total Site Info	21,441	0.49	0.559	94	40,990	1.54	7,040
9	Watchung Borough Administration							
	Pervious pavements	9,143	0.21	0.238	40	17,481	0.66	2,280
	Total Site Info	9,143	0.21	0.238	40	17,481	0.66	2,280
10	Watchung Lake Dev							
	Pervious pavements	7,618	0.17	0.198	33	14,564	0.55	1,375
	Total Site Info	7,618	0.17	0.198	33	14,564	0.55	1,375
11	Watchung Public Library							
	Pervious pavements	8,947	0.21	0.233	39	17,107	0.64	3,345
	Total Site Info	8,947	0.21	0.233	39	17,107	0.64	3,345
12	Wilson Memorial Church							
	Bioretention systems/rain gardens	2,741	0.06	0.071	12	5,243	0.20	700
	Pervious pavements	3,165	0.07	0.082	14	6,051	0.23	1,500
	Total Site Info	5,906	0.14	0.154	26	11,294	0.43	2,200

Unit Cost	Unit	Total Cost	I.C. Treated
(\$		(\$	
(\$)		(\$)	%
25	SF	\$91,125 \$91,125	60.5% 60.5%
25	SF	\$176,000 \$176,000	20.3% 20.3%
25	SF	\$57,000 \$57,000	19.6% 19.6%
25	SF	\$34,375 \$34,375	16.0% 16.0%
25	SF	\$83,625 \$83,625	19.4% 19.4%
5 25	SF SF	\$3,500 \$37,500 \$41,000	5.0% 5.8% 10.8%