

Impervious Cover Reduction Action Plan for Evesham Township, Burlington County, New Jersey

Prepared for Evesham Township by the Rutgers Cooperative Extension Water Resources Program

August 10, 2016

AM PENN FOUNDATION

Table of Contents

Introduction	
Methodology	1
Green Infrastructure Practices	
Potential Project Sites	
Conclusion	

Attachment: Climate Resilient Green Infrastructure

- a. Green Infrastructure Sites
- b. Proposed Green Infrastructure Concepts
- c. Summary of Existing Conditions
- d. Summary of Proposed Green Infrastructure Practices

Introduction

Located in Burlington County in southern New Jersey, Evesham Township covers approximately 29.6 square miles. Figures 1 and 2 illustrate that Evesham Township is dominated by urban land uses. A total of 42.4% of the municipality's land use is classified as urban. Of the urban land in Evesham Township, medium density residential is the dominant land use (Figure 3).

The New Jersey Department of Environmental Protection's (NJDEP) 2012 land use/land cover geographical information system (GIS) data layer categorizes Evesham Township into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Evesham Township Based upon the 2012 NJDEP land use/land cover data, approximately 15.5% of Evesham Township has impervious cover. This level of impervious cover suggests that the streams Evesham Township are likely impacted streams.¹

Methodology

Evesham Township contains portions of eight subwatersheds (Figure 4). For this impervious cover reduction action plan, projects have been identified in each of these watersheds. Initially, aerial imagery was used to identify potential project sites that contain extensive impervious cover. Field visits were then conducted at each of these potential project sites to determine if a viable option exists to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the site visit, appropriate green infrastructure practices for the site were determined. Sites that already had stormwater management practices in place were not considered.

¹ Caraco, D., R. Claytor, P. Hinkle, H. Kwon, T. Schueler, C. Swann, S. Vysotsky, and J. Zielinski. 1998. Rapid Watershed Planning Handbook. A Comprehensive Guide for Managing Urbanizing Watersheds. Prepared by Center For Watershed Protection, Ellicott City, MD. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Region V. October 1998

Subwatersheds of Evesham Township

Figure 1: Map illustrating the land use in Evesham Township

Figure 2: Pie chart illustrating the land use in Evesham Township

Figure 3: Pie chart illustrating the various types of urban land use in Evesham Township

Subwatersheds of Evesham Township

Figure 4: Map of the subwatersheds in Evesham Township

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2012 NJDEP land use/land cover database. For impervious areas, runoff volumes were determined for the water quality design storm (1.25 inches of rain over two-hours) and for the annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Evesham Township using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area. Several key soil parameters were examined (e.g., natural drainage class, saturated hydraulic conductivity of the most limiting soil layer (K_{sat}), depth to water table, and hydrologic soil group) to evaluate the suitability of each site's soil for green infrastructure practices. In cases where multiple soil types were encountered, the key soil parameters were examined for each soil type expected at a site.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2-year design storm, enabling these practices to capture 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

Land Cover	TP load (lbs/acre/yr)	TN load (lbs/acre/yr)	TSS load (lbs/acre/yr)
High, Medium Density Residential	1.4	15	140
Low Density, Rural Residential	0.6	5	100
Commercial	2.1	22	200
Industrial	1.5	16	200
Urban, Mixed Urban, Other Urban	1.0	10	120
Agriculture	1.3	10	300
Forest, Water, Wetlands	0.1	3	40
Barrenland/Transitional Area	0.5	5	60

Table 1: Aerial Loading Coefficients²

² New Jersey Department of Environmental Protection (NJDEP), Stormwater Best Management Practice Manual, 2004.

Green Infrastructure Practices

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principal, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these practices can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits³. A wide range of green infrastructure practices have been evaluated for the potential project sites Evesham Township. Each practice is discussed below.

Disconnected downspouts

This is often referred to as simple disconnection. A downspout is simply disconnected, prevented from draining directly to the roadway or storm sewer system, and directed to discharge water to a pervious area (i.e., lawn).

Pervious pavements

There are several types of permeable pavement systems including porous asphalt, pervious concrete, permeable pavers, and grass pavers. These surfaces are hard and support vehicle traffic but also allow water to infiltrate through the surface. They have an underlying stone layer to store stormwater runoff and allow it to slowly seep into the ground.

³ United States Environmental Protection Agency (USEPA), 2013. Watershed Assessment, Tracking, and Environmental Results, New Jersey Water Quality Assessment Report. <u>http://ofmpub.epa.gov/waters10/attains_state.control?p_state=NJ</u>

Bioretention systems/rain gardens

These are landscaped features that are designed to capture, treat, and infiltrate stormwater runoff. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating wildlife habitat while managing stormwater runoff. Bioretention systems also can be used in soils that do not quickly infiltrate by incorporating an underdrain into the system.

Downspout planter boxes

These are wooden boxes with plants installed at the base of a downspout that provide an opportunity to beneficially reuse rooftop runoff.

Rainwater harvesting systems (cistern or rain barrel)

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.

Bioswale

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and providing water an opportunity to infiltrate.

Stormwater planters

Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Many of these planters are designed to allow the water to infiltrate into the ground while others are designed simply to filter the water and convey it back into the stormwater sewer system.

Tree filter boxes

These are pre-manufactured concrete boxes that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.

Potential Project Sites

Attachment 1 contains information on potential project sites where green infrastructure practices could be installed. The recommended green infrastructure practices and the drainage area that the green infrastructure practice can treat are identified for each potential project site. For each practice, the recharge potential, TSS removal potential, maximum volume reduction potential per storm, and the peak reduction potential are provided. This information is also provided so that proposed development projects that cannot satisfy the New Jersey stormwater management requirements for major development can use one of the identified projects to offset a stormwater management deficit.⁴

⁴ New Jersey Administrative Code, N.J.A.C. 7:8, Stormwater Management, Statutory Authority: N.J.S.A. 12:5-3, 13:1D-1 et seq., 13:9A-1 et seq., 13:19-1 et seq., 40:55D-93 to 99, 58:4-1 et seq., 58:10A-1 et seq., 58:11A-1 et seq. and 58:16A-50 et seq., *Date last amended: April 19, 2010.*

Conclusion

This impervious cover reduction action plan is meant to provide the municipality with a blueprint for implementing green infrastructure practices that will reduce the impact of stormwater runoff from impervious surfaces. These projects can be implemented by a wide variety of people such as boy scouts, girl scouts, school groups, faith-based groups, social groups, watershed groups, and other community groups.

Additionally, development projects that are in need of providing off-site compensation for stormwater impacts can use the projects in this plan as a starting point. The municipality can quickly convert this impervious cover reduction action plan into a stormwater mitigation plan and incorporate it into the municipal stormwater control ordinance.

a. Green Infrastructure Sites

Pennsauken Creek Subwatershed Rancocas Creek Subwatershed Haynes Creek Cooper River Subwatershed **Barton Run** Subwatershed e Pine / Centennial Lake Subwatershed **Big Timber Creek** Subwatershed Great Egg Harbor River Subwatershed Alquatka Branch Subwatershed Mullica River Subwatershed Miles

EVESHAM TOWNSHIP: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE BARTON RUN SUBWATERSHED:

- 1. Barton Run Swim Club
- 2. Cherokee High School
- 3. Evesham Fire/Rescue 223/227
- 4. Evesham Township Municipal Court
- 5. King's Grant Community Room
- 6. Marlton Elementary School
- 7. Memorial Park
- 8. Richard L. Rice Elementary School
- 9. Villa Royal Association

SITES WITHIN THE LAKE PINE SUBWATERSHED:

- 10. Kettle Run Fire/Rescue 225/228
- 11. Links Golf Course

SITES WITHIN THE PENNSAUKEN CREEK SUBWATERSHED:

12. Evesham Fire/Rescue 221/229

SITES WITHIN THE RANCOCAS CREEK SUBWATERSHED:

- 13. Christ Presbyterian Church
- 14. Frances S. DeMasi Elementary School
- 15. Marlton Assembly of God
- 16. Marlton Post Office
- 17. Robert B. Jaggard Elementary School
- 18. St. Joan of Arc Parish and School

b. Proposed Green Infrastructure Concepts

BARTON RUN SWIM CLUB

Subwatershed:	Barton Run
Site Area:	169,977 sq. ft.
Address:	100 Lakeside Drive Marlton, NJ 08053
Block and Lot:	Block 44.3, Lot 16

Stormwater is currently directed to an existing catch basin. Installing rain gardens in the parking lot islands can capture, treat, and infiltrate stormwater runoff from the parking lot. Replacing parking spaces with porous pavement can capture and infiltrate runoff from the other side of the parking lot. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)		rom (lbs/yr)	Runoff Volume from In	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
30	51,770	2.5	26.1	237.7	0.040	1.42

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.288	48	21,834	0.82	2,765	\$13,825
Pervious pavement	0.352	59	26,651	1.00	2,410	\$60,250

Barton Run Swim Club

- bioretention system
- pervious pavement
- **C** drainage area
- [] property line

2015 Aerial: NJOIT, OGIS

CHEROKEE HIGH SCHOOL

Subwatershed:	Barton Run	
Site Area:	4,117,543 sq. ft.	
Address:	120 Tomlinson Mill Road Marlton, NJ 08053	
Block and Lot:	Block 39, Lots 1, 2, 20.1, 2.02, 2.03, 5	

Stormwater is currently directed to existing catch basins. Parking spots on the north side of the parking lot can be replaced with porous asphalt to capture and infiltrate stormwater. A rain garden adjacent to the school sign can capture, treat, and infiltrate additional stormwater runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)		rom (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
26	1,064,222	51.3	537.5	4,886.2	0.829	29.19

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.183	31	13,973	0.52	1,755	\$8,775
Pervious pavement	1.773	297	134,311	5.04	12,150	\$303,750

Cherokee High School

- bioretention system
- pervious pavement
- C drainage area
- [] property line

1

2015 Aerial: NJOIT, OGIS

EVESHAM FIRE/RESCUE 223/227

Subwatershed:	Barton Run
Site Area:	181,773 sq. ft.
Address:	150 Merchants Way Marlton, NJ 08053
Block and Lot:	Block 51.65, Lot 1, 2, 3

Stormwater is currently directed to an existing detention basin. A cistern can be placed adjacent to the southwest corner of the main building and the water can be used to clean vehicles. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover	Existing Loads from Impervious Cover (lbs/yr)		rom (lbs/yr)	Runoff Volume from In	npervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
36	65,165	3.1	32.9	299.2	0.051	1.79

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Rainwater harvesting	0.035	6	2,633	0.10	1,040 (gal)	\$2,080

Evesham Fire/Rescue 223/227

- rainwater harvesting
- drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

EVESHAM TOWNSHIP MUNICIPAL COURT

Subwatershed:	Barton Run
Site Area:	837,068 sq. ft.
Address:	984 Tuckerton Road Marlton, NJ 08053
Block and Lot:	Block 45, Lot 1

Stormwater currently collects on the east side of the parking lot. Parking spots on that side of the lot can be replaced with porous asphalt to capture and infiltrate stormwater runoff from the parking lot. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)		Runoff Volume from Impervious Cover (Mgal)			
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
23	192,702	9.3	97.3	884.8	0.150	5.29

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.662	111	50,191	1.88	4,540	\$113,500

Evesham Township Municipal Court

- pervious pavement
- C drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

KING'S GRANT COMMUNITY ROOM

Subwatershed:	Barton Run
Site Area:	322,664 sq. ft.
Address:	50 Landings Drive Marlton, NJ 08053
Block and Lot:	Block 51.63, 51.32, Lot 1, 25

Stormwater is currently directed to existing catch basins. Parking spots adjacent to and across from the main building can be replaced with porous asphalt to capture and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ious Cover Existing Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
37	117,923	5.7	59.6	541.4	0.092	3.23	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.260	44	19,702	0.74	1,780	\$44,500

King's Grant Community Room

- pervious pavement
- drainage area
- **[]** property line
- 2015 Aerial: NJOIT, OGIS

MARLTON ELEMENTARY SCHOOL

Subwatershed:	Barton Run
Site Area:	2,037,458 sq. ft.
Address:	190 Tomlinson Mill Road Evesham, NJ 08053
Block and Lot:	Block 39, Lot 1.01, 1.02

Stormwater is currently directed to existing catch basins. Parking spots by the north and west buildings can be replaced with porous asphalt to capture and infiltrate stormwater runoff from the parking lot. Rain gardens adjacent to the building can capture, treat, and infiltrate roof runoff before it reaches the existing catch basin. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ervious Cover Existing Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
26	526,875	25.4	266.1	2,419.1	0.411	14.45	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.516	86	39,068	1.47	4,950	\$24,750
Pervious pavement	0.651	109	49,331	1.85	4,465	\$111,625

Marlton Elementary School

- bioretention system
- pervious pavement
- C drainage area
- **[]** property line
- 2015 Aerial: NJOIT, OGIS

MEMORIAL PARK

Subwatershed:	Barton Run
Site Area:	2,830,013 sq. ft.
Address:	1004 Tuckerton Road Marlton, NJ 08053
Block and Lot:	Block 44, Lot 1.010

A cistern can be placed adjacent to the south building to capture roof runoff, which can then be used to water an existing community garden south of the building. A rain garden adjacent to the building can capture, treat, and infiltrate additional roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
16	439,434	21.2	221.9	2,017.6	0.342	12.05	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.380	64	39,068	1.47	2,780	\$13,900
Rainwater harvesting	0.105	18	25,582	0.96	3,000 (gal)	\$6,000

Memorial Park

- bioretention system
- rainwater harvesting
- C drainage area
- **[]** property line
- 2015 Aerial: NJOIT, OGIS

RICHARD L. RICE ELEMENTARY SCHOOL

Subwatershed:	Barton Run
Site Area:	970,087 sq. ft.
Address:	50 Crown Royal Parkway Marlton, NJ 08053
Block and Lot:	Block 51, Lot 3

Stormwater is currently directed to existing catch basins. The basketball court and parking spots on the west side of the parking lot can be replaced with porous asphalt to capture and infiltrate stormwater. Rain gardens adjacent to the building can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25'' Water Quality Storm	For an Annual Rainfall of 44''	
19	185,719	9.0	93.8	852.7	0.145	5.09	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.346	58	26,195	0.98	3,320	\$16,600
Pervious pavement	0.256	43	19,366	0.73	3,990	\$99,750

Richard L. Rice Elementary School

- bioretention system
- pervious pavement
- drainage area
- **[]** property line
- 2015 Aerial: NJOIT, OGIS

VILLA ROYAL ASSOCIATION

Subwatershed:	Barton Run
Site Area:	1,546,169 sq. ft.
Address:	5 Crown Royal Parkway Marlton, NJ 08053
Block and Lot:	Block 51.05, Lot 1

Stormwater currently stands in a low ditch in a parking lot island. Parking spots to the north of the island can be replaced with porous asphalt to capture and infiltrate stormwater. Installing a rain garden in the island can capture, treat, and infiltrate the stormwater runoff, eliminating the standing water. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)		Runoff Volume from Impervious Cover (Mgal)			
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
55	856,021	41.3	432.3	3,930.3	0.667	23.48

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.259	43	19,590	0.74	2,480	\$12,400
Pervious pavement	0.189	32	14,332	0.45	1,300	\$32,500

Villa Royal Association

- bioretention system
- pervious pavement
- C drainage area
- **[]** property line
 - 2015 Aerial: NJOIT, OGIS

KETTLE RUN FIRE/RESCUE 225/228

Subwatershed:	Lake Pine
Site Area:	94,922 sq. ft.
Address:	498 Hopewell Road Marlton, NJ 08053
Block and Lot:	Block 66.01, Lot 3, 4

Stormwater is currently directed to an existing detention basin. Cisterns adjacent to the building can harvest roof runoff to be used for washing department vehicles. Installing a rain garden on the east side of the building can capture, treat, and infiltrate roof additional runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
45	42,532	2.1	21.5	195.3	0.033	1.17	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.071	12	5,348	0.20	680	\$3,400
Rainwater harvesting	0.094	16	7,099	0.27	2,800 (gal)	\$5,600

Kettle Run Fire/Rescue 225/228

- bioretention system
- rainwater harvesting
- drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

LINKS GOLF COURSE

Subwatershed:	Lake Pine
Site Area:	7,219,920 sq. ft.
Address:	100 Majestic Way Marlton, NJ 08053
Block and Lot:	Block 52.12, Lot 1

Stormwater currently drains from impervious surfaces. Parking spaces can be replaced with porous asphalt to capture and infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
2	142,527	6.9	72.0	654.4	0.111	3.91	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.236	40	17,907	0.67	1,620	\$40,500

Links Golf Course

- pervious pavement
- drainage area
- **[]** property line
 - 2015 Aerial: NJOIT, OGIS

EVESHAM FIRE/RESCUE 221/229

Subwatershed:	Pennsauken Creek
Site Area:	72,280 sq. ft.
Address:	26 East Main Street Marlton, NJ 08053
Block and Lot:	Block 4.05, Lot 10

Stormwater is currently directed to connected downspouts. Rainwater can be harvested by installing a cistern adjacent to the building for cleaning department vehicles. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ervious Cover Existing Loads from Impervious Cover (lbs/yr)			from (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
84	60,542	2.9	30.6	278.0	0.047	1.66	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Rainwater harvesting	0.029	5	2,192	0.08	865 (gal)	\$1,730

Evesham Fire/Rescue 221/229

- rainwater harvesting
- **C** drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

CHRIST PRESBYTERIAN CHURCH

Subwatershed:	Rancocas Creek
Site Area:	138,625 sq. ft.
Address:	515 East Main Street Marlton, NJ 08053
Block and Lot:	Block 29, Lot 3.02

Stormwater currently drains towards the road. Rain gardens adjacent to the building, near the road, and in the northwest corner of the property can capture, treat, and infiltrate stormwater and roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	Impervious CoverExisting Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
19	26,385	1.3	13.3	121.1	0.021	0.72	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.112	19	8,467	0.32	2,090	\$10,450

Christ Presbyterian Church

- bioretention system
- C drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

FRANCES S. DEMASI ELEMENTARY SCHOOL

Subwatershed:	Rancocas Creek
Site Area:	1,029,541 sq. ft.
Address:	199 Evesboro Medford Road Marlton, NJ 08053
Block and Lot:	Block 13.68, Lot 8

Stormwater is currently directed to existing catch basins. Parking spots in the parking lot south of the school can be replaced with porous asphalt to capture and infiltrate stormwater. Installing rain gardens adjacent to the building and parking lot can capture, treat, and infiltrate runoff. Rain water can be harvested in one of the school's courtyards to be used to water an existing garden. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	ting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
41	422,244	20.4	213.3	1,938.7	0.329	11.58	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.581	97	18,595	0.70	5,575	\$27,875
Pervious pavement	0.260	44	17,683	0.74	1,780	\$44,500
Rainwater harvesting	0.002	0	8,497	0.32	50-80 (gal)	\$250- \$310

Frances S. DeMasi Middle School

- bioretention system
- pervious pavement
 - rainwater harvesting
- C drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

150' 75

MARLTON ASSEMBLY OF GOD

Subwatershed:	Rancocas Creek
Site Area:	496,420 sq. ft.
Address:	625 East Main Street Marlton, NJ 08053
Block and Lot:	Block 19, Lot 1.01

Stormwater is currently directed to existing detention basins as well as existing catch basins. Parking spots can be replaced with porous asphalt to capture and infiltrate stormwater. A rain garden adjacent to the west building can capture, treat, and infiltrate roof runoff. The sidewalk near the west entrance of the west building can be replaced with porous pavement to infiltrate stormwater. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	pervious Cover Existing Loads from Impervious Cover (lbs/yr)			rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25'' Water Quality Storm	For an Annual Rainfall of 44''	
41	204,017	9.8	103.0	936.7	0.159	5.60	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.014	2	1,040	0.04	130	\$650
Pervious pavement	0.556	93	51,792	1.94	4,030	\$100,750

Marlton Assembly of God

- bioretention system
- pervious pavement
- C drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

MARLTON POST OFFICE

Subwatershed:	Rancocas Creek
Site Area:	84,072 sq. ft.
Address:	123 East Main Street Marlton, NJ 08053
Block and Lot:	Block 26, Lot 7.02

Stormwater is currently directed to existing catch basins. Parking spaces on the southeast side of the parking lot can be replaced with porous asphalt to infiltrate stormwater. A preliminary soil assessment suggests that more soil testing would be required before determining the soil's suitability for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)				
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''			
85	71,114	3.4	35.9	326.5	0.055	1.95			

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Pervious pavement	0.236	40	17,907	0.67	1,620	\$40,500

Marlton Post Office

- pervious pavement
- **C** drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

ROBERT B. JAGGARD ELEMENTARY SCHOOL

Subwatershed:	Rancocas Creek
Site Area:	446,988 sq. ft.
Address:	2 Wescott Road Marlton, NJ 08053
Block and Lot:	Block 32.12, Lot 26

Stormwater is currently directed to an existing catch basin. Parking spots on the north side of the parking lot, as well as the basketball court can be replaced with porous asphalt to capture and infiltrate stormwater. Rain gardens adjacent to the building can capture, treat, and infiltrate roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Exis Imperv	sting Loads f vious Cover	from (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)				
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''			
61	273,419	13.2	138.1	1,255.4	0.213	7.50			

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost	
Bioretention systems	0.175	29	13,225	0.50	1,675	\$8,375	
Pervious pavement	0.701	117	53,123	1.99	6,575	\$164,375	

Robert B. Jaggard Elementary School

- bioretention system
- pervious pavement
- C drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

ST. JOAN OF ARC PARISH AND SCHOOL

Subwatershed:	Rancocas Creek
Site Area:	495,192 sq. ft.
Address:	100 Willow Bend Road Marlton, NJ 08053
Block and Lot:	Block 32, Lot 2

Stormwater is currently directed to an existing detention basin. Parking spots can be replaced with porous asphalt to capture and infiltrate stormwater. Installing rain gardens adjacent to the north and southeast building can capture, treat, and infiltrate roof runoff. Stone pavers on the north side of the southeast building can be replaced with a porous pavement to capture and infiltrate roof runoff. A preliminary soil assessment suggests that the soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover	Exis Imperv	ting Loads f vious Cover	rom (lbs/yr)	Runoff Volume from Impervious Cover (Mgal)				
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''			
53	263,046	12.7	132.9	1,207.7	0.205	7.21			

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost	
Bioretention systems	0.047	8	3,583	0.13	455	\$2,275	
Pervious pavement	0.933	156	70,686	2.56	6,670	\$166,750	

St. Joan of Arc Parish and School

- bioretention system
- pervious pavement
- C drainage area
- [] property line
- 2015 Aerial: NJOIT, OGIS

c. Summary of Existing Conditions

											Runoff Volumes fro	m I.C.
					Exi	sting Annua	l Loads		I.C.	I.C.	Water Quality Storm	
Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Block	Lot	TP	TN	TSS	I.C.	Area	Area	(1.25" over 2-hours)	Annual
	(ac)	(SF)			(lb/yr)	(lb/yr)	(lb/yr)	%	(ac)	(SF)	(Mgal)	(Mgal)
BARTON RUN SUBWATERSHED	298.73	13,012,751			168.7	1,767.6	16,069.0		80.35	3,499,829	2.727	95.99
Barton Run Swim Club Total Site Info	3.90	169,977	44.3	16	2.5	26.1	237.7	30	1.19	51,770	0.040	1.42
Cherokee High School Total Site Info	94.53	4,117,543	39	1, 2, 20.1, 2.02, 2.03, 5	51.3	537.5	4,886.2	26	24.43	1,064,222	0.829	29.19
Evesham Fire/Rescue 223/227 Total Site Info	4.17	181,773	51.65	1,2,3	3.1	32.9	299.2	36	1.50	65,165	0.051	1.79
Evesham Township Municipal Court Total Site Info	19.22	837,068	45	1	9.3	97.3	884.8	23	4.42	192,702	0.150	5.29
King's Grant Community Room Total Site Info	7.41	322,664	51.63, 51.32	1, 25	5.7	59.6	541.4	37	2.71	117,923	0.092	3.23
Marlton Elementary School Total Site Info	46.77	2,037,458	39	1.01, 1.02	25.4	266.1	2,419.1	26	12.10	526,875	0.411	14.45
Memorial Park Total Site Info	64.97	2,830,013	44	1.010	21.2	221.9	2,017.6	16	10.09	439,434	0.342	12.05
Richard L. Rice Elementary School Total Site Info	22.27	970,087	51	3	9.0	93.8	852.7	19	4.26	185,719	0.145	5.09
Villa Royal Association Total Site Info	35.50	1,546,169	51.05	1	41.3	432.3	3,930.3	55	19.65	856,021	0.667	23.48
LAKE PINE SUBWATERSHED	167.93	7,314,842			8.9	93.5	849.7		4.25	185,059	0.144	5.08
Kettle Run Fire/Rescue 225/228 Total Site Info	2.18	94,922	66.01	3,4	2.1	21.5	195.3	45	0.98	42,532	0.033	1.17
Links Golf Course Total Site Info	165.75	7,219,920	52.12	1	6.9	72.0	654.4	2	3.27	142,527	0.111	3.91

Summary of Existing Conditions

											Runoff Volumes fro	m I.C.
					Exi	sting Annual	Loads		I.C.	I.C.	Water Quality Storm	
Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Block	Lot	TP	TN	TSS	I.C.	Area	Area	(1.25" over 2-hours)	Annual
	(ac)	(SF)			(lb/yr)	(lb/yr)	(lb/yr)	%	(ac)	(SF)	(Mgal)	(Mgal)
PENNSAUKEN CREEK SUBWATERSHED	1.66	72,280			2.9	30.6	278.0		1.39	60,542	0.047	1.66
Evesham Fire/Rescue 221/229 Total Site Info	1.66	72,280	4.05	10	2.9	30.6	278.0	84	1.39	60,542	0.047	1.66
RANCOCAS CREEK SUBWATERSHED	61.77	2,690,838			60.8	636.5	5,786.2		28.93	1,260,225	0.982	34.56
Christ Presbyterian Church Total Site Info	3.18	138,625	29	3.02	1.3	13.3	121.1	19	0.61	26,385	0.021	0.72
Frances S. DeMasi Middle School Total Site Info	23.64	1,029,541	13.68	8	20.4	213.3	1,938.7	41	9.69	422,244	0.329	11.58

d. Summary of Proposed Green Infrastructure Practices

Summary of Proposed Green Infrastructure Practices

		Potential Man	agement Area			Max Volume	Peak Discharge					
				Recharge	TSS Removal	Reduction	Reduction	Size of	Unit		Total	I.C.
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$)		(\$)	%
	BARTON RUN SUBWATERSHED	226,490	5.20	5.901	988	475,174	17.75	50,315			\$803,955	1.7%
1	Barton Run Swim Club											
	Bioretention systems	11,060	0.25	0.288	48	21,834	0.82	2,765	5	SF	\$13,825	21.4%
	Pervious pavement	13,500	0.31	0.352	59	26,651	1.00	2,410	25	SF	\$60,250	26.1%
	Total Site Info	11,060	0.25	0.288	48	21,834	0.82	2,765			\$13,825	21.4%
2	Cherokee High School											
	Bioretention system	7,010	0.16	0.183	31	13,973	0.52	1,755	5	SF	\$8,775	0.7%
	Pervious pavement	68,040	1.56	1.773	297	134,311	5.04	12,150	25	SF	\$303,750	6.4%
	Total Site Info	75,050	1.72	1.955	327	148,284	5.56	13,905			\$312,525	7.1%
3	Evesham Fire/Rescue 223/227											
	Rainwater harvesting	1,335	0.03	0.035	6	2,633	0.10	1,040	2	gal	\$2,080	2.0%
	Total Site Info	1,335	0.03	0.035	6	2,633	0.10	1,040			\$2,080	2.0%
4	Evesham Township Municipal Court											
	Pervious pavement	25,425	0.58	0.662	111	50,191	1.88	4,540	25	SF	\$113,500	13.2%
	Total Site Info	25,425	0.58	0.662	111	50,191	1.88	4,540			\$113,500	13.2%
5	King's Grant Community Room											
	Pervious pavement	9,980	0.23	0.260	44	19,702	0.74	1,780	25	SF	\$44,500	8.5%
	Total Site Info	9,980	0.23	0.260	44	19,702	0.74	1,780			\$44,500	8.5%
6	Marlton Elementary School											
	Bioretention systems	19,790	0.45	0.516	86	39,068	1.47	4,950	5	SF	\$24,750	3.8%
	Pervious pavement	24,990	0.57	0.651	109	49,331	1.85	4,465	25	SF	\$111,625	4.7%
	Total Site Info	44,780	1.03	1.167	195	88,399	3.32	9,415			\$136,375	8.5%
7	Memorial Park											
	Bioretention system	14,575	0.33	0.380	64	39,068	1.47	2,780	5	SF	\$13,900	3.3%
	Rainwater harvesting	4,020	0.09	0.105	18	25,582	0.96	3,000	2	gal	\$6,000	0.9%
	Total Site Info	18,595	0.43	0.484	81	64,650	2.43	5,780			\$19,900	4.2%

Summary of Proposed Green Infrastructure Practices

		Potential Mar	nagement Are	a		Max Volume	Peak Discharge					
		1		Recharge	TSS Removal	Reduction	Reduction	Size of	Unit		Total	I.C.
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$)		(\$)	%
8	Richard I. Rice Flementary School											
0	Bioretention systems	13 270	0.30	0 346	58	26 195	0.98	3 320	5	SF	\$16 600	71%
	Pervious pavement	9.810	0.23	0.256	43	19,366	0.73	3,990	25	SF	\$99,750	5.3%
	Total Site Info	23,080	0.53	0.601	101	45,561	1.71	7,310	20	51	\$116,350	12.4%
0												
9	Villa Royal Association	0.025	0.02	0.050	12	10,500	0.74	0 400	_	aг	¢10,400	1.00/
	Bioretention system	9,925	0.23	0.259	43	19,590	0.74	2,480	5 25	SF	\$12,400	1.2%
	Total Site Info	7,200 17 185	0.17	0.189	32 75	14,332	0.43	1,500	23	ЗГ	\$32,300	0.8%
	Total Site Info	17,185	0.39	0.448	75	55,922	1.19	3,780			\$44,900	2.0%
	LAKE PINE SUBWATERSHED	15,375	0.35	0.401	67	30,354	1.14	5,100			\$49,500	0.2%
10	Kettle Run Fire/Rescue 225/228											
	Bioretention system	2,710	0.06	0.071	12	5,348	0.20	680	5	SF	\$3,400	6.4%
	Rainwater harvesting	3,595	0.08	0.094	16	7,099	0.27	2,800	2	gal	\$5,600	8.5%
	Total Site Info	6,305	0.14	0.164	28	12,447	0.47	3,480			\$9,000	14.8%
11	Links Golf Course											
	Pervious pavement	9,070	0.21	0.236	40	17,907	0.67	1,620	25	SF	\$40,500	6.4%
	Total Site Info	9,070	0.21	0.236	40	17,907	0.67	1,620			\$40,500	6.4%
	PENNSAUKEN CREEK SUBWATERSHED	1,110	0.03	0.029	5	2,192	0.08	865			\$1,730	1.8%
12	Evesham Fire/Rescue 221/229											
	Rainwater harvesting	1.110	0.03	0.029	5	2,192	0.08	865	2	gal	\$1.730	1.8%
	Total Site Info	1,110	0.03	0.029	5	2,192	0.08	865		0	\$1,730	1.8%
	RANCOCAS CREEK SUBWATERSHED	143,050	3.28	3.617	605	264,598	9.91	30,600			\$20,900	5.3%
13	Christ Presbyterian Church											
	Bioretention systems	4,290	0.10	0.112	19	8,467	0.32	2,090	5	SF	\$10,450	16.3%
	Total Site Info	4,290	0.10	0.112	19	8,467	0.32	2,090			\$10,450	16.3%

Summary of Proposed Green Infrastructure Practices

		Potential Man	agement Area			Max Volume	Peak Discharge					
				Recharge	TSS Removal	Reduction	Reduction	Size of	Unit		Total	I.C.
	Subwatershed/Site Name/Total Site Info/GI Practice	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
		(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$)		(\$)	%
14 Frances S. DeMasi Middle School												
	Bioretention systems	22,305	0.51	0.581	97	18,595	0.70	5,575	5	SF	\$27,875	5.3%
	Pervious pavement	9,980	0.23	0.260	44	17,683	0.74	1,780	25	SF	\$44,500	2.4%
	Rainwater harvesting	4,305	0.10	0.002	0	8,497	0.32	50-80	1	barrel	\$250-310	0.2%
	Total Site Info	36,590	0.84	0.843	141	44,775	1.76	7,355			\$72,375	7.8%