

Impervious Cover Reduction Action Plan for Pilesgrove Township, Salem County, New Jersey

Prepared for Pilesgrove Township by the Rutgers Cooperative Extension Water Resources Program

April 30, 2015

Table of Contents

Introduction	
Methodology	1
Green Infrastructure Practices	
Potential Project Sites	
Conclusion	

Attachment: Climate Resilient Green Infrastructure

- a. Green Infrastructure Sites
- b. Proposed Green Infrastructure Concepts
- c. Summary of Existing Conditions
- d. Summary of Proposed Green Infrastructure Practices

Introduction

Located in Salem County New Jersey, Pilesgrove Township covers nearly 35.0 square miles. Figures 1 and 2 illustrate that Pilesgrove Township is dominated by agricultural land uses. Only 12.7% of the municipality's land use is classified as urban (Figure 2). Of the urban land in Pilesgrove Township, rural residential is the dominant land use (Figure 3).

The New Jersey Department of Environmental Protection's (NJDEP) 2007 land use/land cover geographical information system (GIS) data layer categorizes Pilesgrove Township into many unique land use areas, assigning a percent impervious cover for each delineated area. These impervious cover values were used to estimate the impervious coverage for Pilesgrove Township. Based upon the 2007 NJDEP land use/land cover data, approximately 2.2% of Pilesgrove Township has impervious cover. This level of impervious cover suggests that the streams in Pilesgrove Township are likely considered to be sensitive streams.¹

Methodology

Pilesgrove Township contains portions of six watersheds (Figure 4). For this impervious cover reduction action plan, projects have been identified in each of these watersheds. Initially, aerial imagery was used to identify potential project sites that contain extensive impervious cover. Field visits were then conducted at each of these potential project sites to determine if a viable option exists to reduce impervious cover or to disconnect impervious surfaces from draining directly to the local waterway or storm sewer system. During the site visit, appropriate green infrastructure practices for the site were determined. Sites that already had stormwater management practices in place were not considered.

¹ Caraco, D., R. Claytor, P. Hinkle, H. Kwon, T. Schueler, C. Swann, S. Vysotsky, and J. Zielinski. 1998. Rapid Watershed Planning Handbook. A Comprehensive Guide for Managing Urbanizing Watersheds. Prepared by Center For Watershed Protection, Ellicott City, MD. Prepared for U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds and Region V. October 1998

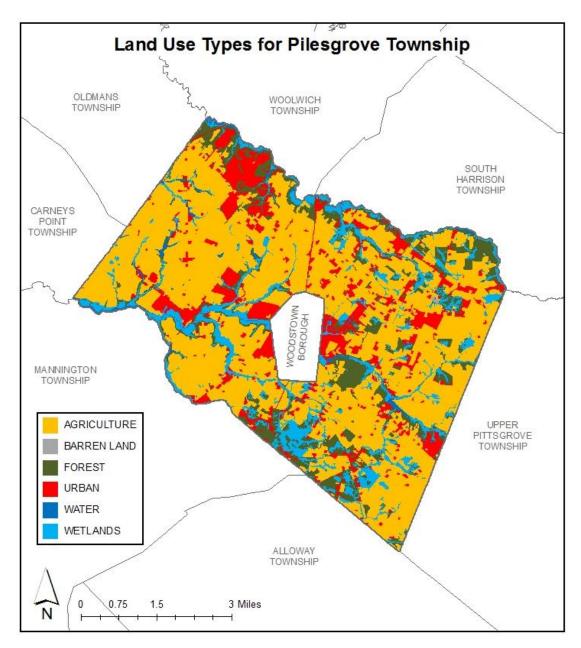


Figure 1: Map illustrating the land use in Pilesgrove Township

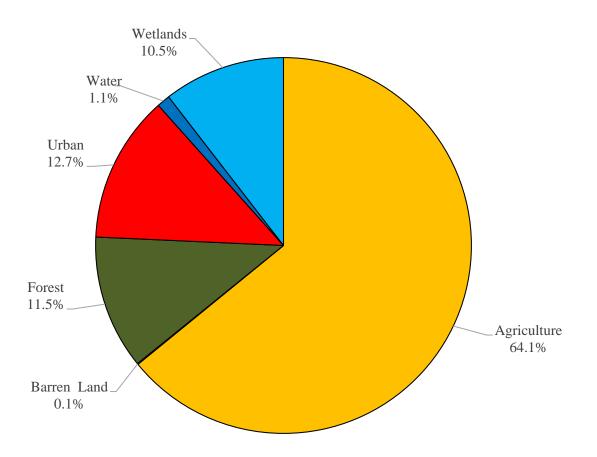


Figure 2: Pie chart illustrating the land use in Pilesgrove Township

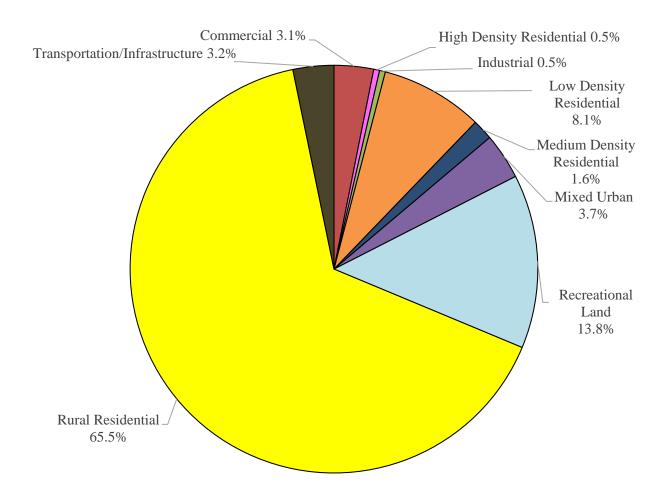


Figure 3: Pie chart illustrating the various types of urban land use in Pilesgrove Township

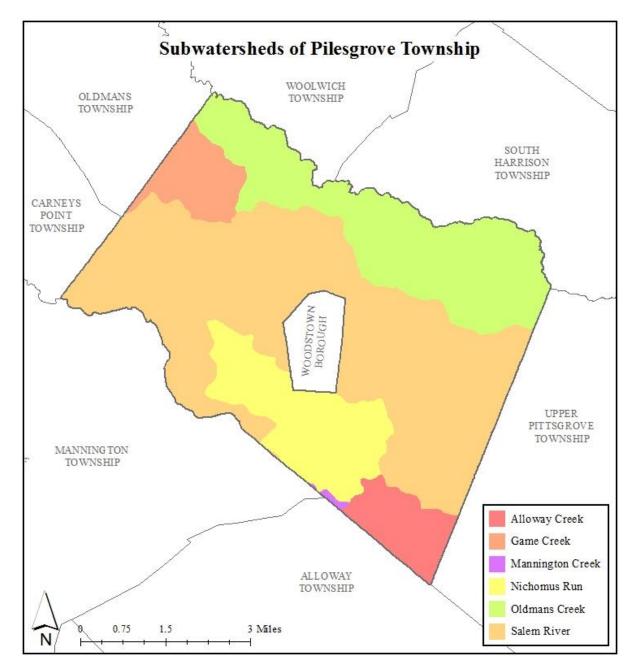


Figure 4: Map of the subwatersheds in Pilesgrove Township

For each potential project site, specific aerial loading coefficients for commercial land use were used to determine the annual runoff loads for total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) from impervious surfaces (Table 1). These are the same aerial loading coefficients that NJDEP uses in developing total maximum daily loads (TMDLs) for impaired waterways of the state. The percentage of impervious cover for each site was extracted from the 2007 NJDEP land use/land cover database. For impervious areas, runoff volumes were determined for the water quality design storm (1.25 inches of rain over two-hours) and for the annual rainfall total of 44 inches.

Preliminary soil assessments were conducted for each potential project site identified in Pilesgrove Township using the United States Department of Agriculture Natural Resources Conservation Service Web Soil Survey, which utilizes regional and statewide soil data to predict soil types in an area. Several key soil parameters were examined (e.g., natural drainage class, saturated hydraulic conductivity of the most limiting soil layer (K_{sat}), depth to water table, and hydrologic soil group) to evaluate the suitability of each site's soil for green infrastructure practices. In cases where multiple soil types were encountered, the key soil parameters were examined for each soil type expected at a site.

For each potential project site, drainage areas were determined for each of the green infrastructure practices proposed at the site. These green infrastructure practices were designed to manage the 2-year design storm, enabling these practices to capture 95% of the annual rainfall. Runoff volumes were calculated for each proposed green infrastructure practice. The reduction in TSS loading was calculated for each drainage area for each proposed green infrastructure practice using the aerial loading coefficients in Table 1. The maximum volume reduction in stormwater runoff for each green infrastructure practice for a storm was determined by calculating the volume of runoff captured from the 2-year design storm. For each green infrastructure practice, peak discharge reduction potential was determined through hydrologic modeling in HydroCAD. For each green infrastructure practice, a cost estimate is provided. These costs are based upon the square footage of the green infrastructure practice and the real cost of green infrastructure practice implementation in New Jersey.

Land Cover	TP load (lbs/acre/yr)	TN load (lbs/acre/yr)	TSS load (lbs/acre/yr)
High, Medium Density Residential	1.4	15	140
Low Density, Rural Residential	0.6	5	100
Commercial	2.1	22	200
Industrial	1.5	16	200
Urban, Mixed Urban, Other Urban	1.0	10	120
Agriculture	1.3	10	300
Forest, Water, Wetlands	0.1	3	40
Barrenland/Transitional Area	0.5	5	60

Table 1: Aerial Loading Coefficients²

² New Jersey Department of Environmental Protection (NJDEP), Stormwater Best Management Practice Manual, 2004.

Green Infrastructure Practices

Green infrastructure is an approach to stormwater management that is cost-effective, sustainable, and environmentally friendly. Green infrastructure projects capture, filter, absorb, and reuse stormwater to maintain or mimic natural systems and to treat runoff as a resource. As a general principal, green infrastructure practices use soil and vegetation to recycle stormwater runoff through infiltration and evapotranspiration. When used as components of a stormwater management system, green infrastructure practices such as bioretention, green roofs, porous pavement, rain gardens, and vegetated swales can produce a variety of environmental benefits. In addition to effectively retaining and infiltrating rainfall, these practices can simultaneously help filter air pollutants, reduce energy demands, mitigate urban heat islands, and sequester carbon while also providing communities with aesthetic and natural resource benefits³. A wide range of green infrastructure practices have been evaluated for the potential project sites in Pilesgrove Township. Each practice is discussed below.

Disconnected downspouts

This is often referred to as simple disconnection. A downspout is simply disconnected, prevented from draining directly to the roadway or storm sewer system, and directed to discharge water to a pervious area (i.e., lawn).

Pervious pavements

There are several types of permeable pavement systems including porous asphalt, pervious concrete, permeable pavers, and grass pavers. These surfaces are hard and support vehicle traffic but also allow water to infiltrate through the surface. They have an underlying stone layer to store stormwater runoff and allow it to slowly seep into the ground.

³ United States Environmental Protection Agency (USEPA), 2013. Watershed Assessment, Tracking, and Environmental Results, New Jersey Water Quality Assessment Report. <u>http://ofmpub.epa.gov/waters10/attains_state.control?p_state=NJ</u>

Bioretention systems/rain gardens

These are landscaped features that are designed to capture, treat, and infiltrate stormwater runoff. These systems can easily be incorporated into existing landscapes, improving aesthetics and creating wildlife habitat while managing stormwater runoff. Bioretention systems also can be used in soils that do not quickly infiltrate by incorporating an underdrain into the system.

Downspout planter boxes

These are wooden boxes with plants installed at the base of a downspout that provide an opportunity to beneficially reuse rooftop runoff.

Rainwater harvesting systems (cistern or rain barrel)

These systems capture rainwater, mainly from rooftops, in cisterns or rain barrels. The water can then be used for watering gardens, washing vehicles, or for other non-potable uses.

Bioswale

Bioswales are landscape features that convey stormwater from one location to another while removing pollutants and providing water an opportunity to infiltrate.

Stormwater planters

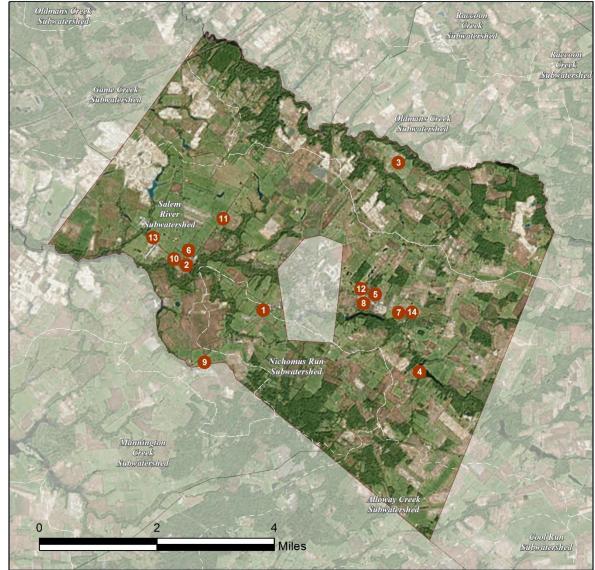
Stormwater planters are vegetated structures that are built into the sidewalk to intercept stormwater runoff from the roadway or sidewalk. Many of these planters are designed to allow the water to infiltrate into the ground while others are designed simply to filter the water and convey it back into the stormwater sewer system.

Tree filter boxes

These are pre-manufactured concrete boxes that contain a special soil mix and are planted with a tree or shrub. They filter stormwater runoff but provide little storage capacity. They are typically designed to quickly filter stormwater and then discharge it to the local sewer system.

Potential Project Sites

Attachment 1 contains information on potential project sites where green infrastructure practices could be installed. The recommended green infrastructure practice and the drainage area that the green infrastructure practice can treat are identified for each potential project site. For each practice, the recharge potential, TSS removal potential, maximum volume reduction potential per storm, and the peak reduction potential are provided. This information is also provided so that proposed development projects that cannot satisfy the New Jersey stormwater management requirements for major development can use one of the identified projects to offset a stormwater management deficit.⁴


⁴ New Jersey Administrative Code, N.J.A.C. 7:8, Stormwater Management, Statutory Authority: N.J.S.A. 12:5-3, 13:1D-1 et seq., 13:9A-1 et seq., 13:19-1 et seq., 40:55D-93 to 99, 58:4-1 et seq., 58:10A-1 et seq., 58:11A-1 et seq. and 58:16A-50 et seq., *Date last amended: April 19, 2010.*

Conclusion

This impervious cover reduction action plan is meant to provide the municipality with a blueprint for implementing green infrastructure practices that will reduce the impact of stormwater runoff from impervious surfaces. These projects can be implemented by a wide variety of people such as boy scouts, girl scouts, school groups, faith-based groups, social groups, watershed groups, and other community groups.

Additionally, development projects that are in need of providing off-site compensation for stormwater impacts can use the projects in this plan as a starting point. The municipality can quickly convert this impervious cover reduction action plan into a stormwater mitigation plan and incorporate it into the municipal stormwater control ordinance.

a. Green Infrastructure Sites

PILESGROVE TOWNSHIP: GREEN INFRASTRUCTURE SITES

SITES WITHIN THE NICHOMUS RUN SUBWATERSHED:

Acme

1

2 Tri-County Veterinary Hospital

SITES WITHIN THE OLDMANS CREEK SUBWATERSHED:

3 Woodstown Preschool Academy

SITES WITHIN THE SALEM RIVER SUBWATERSHED:

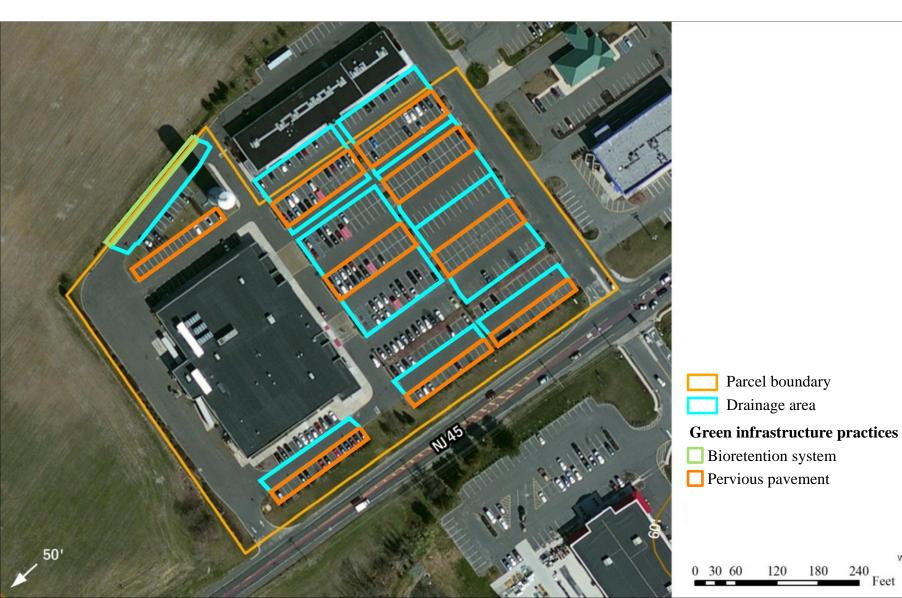
- 4 Camp Crockett County Park
- 5 Franklin Bank
- 6 Fulton Bank of New Jersey
- 7 Lighthouse Christian Center
- 8 Pilesgrove Municipal Building
- 9 Salem County Public Works
- 10 Sharptown United Methodist Church
- 11 The Church of Jesus Christ of Latter-Day Saints
- 12 Wood Lanes
- 13 Woodstown NJ State Police Station
- 14 Woodstown Veterinary Hospital

b. Proposed Green Infrastructure Concepts

Acme

857 NJ 45 Pilesgrove, NJ 08098 Block 64, Lot 5 296,686 sq. ft. Nichomus Run Subwatershed

Parking spaces could be repaved with pervious pavement to intercept runoff prior to storm drains, thereby reducing loads to storm sewers. Bioretention systems could also be utilized to collect runoff. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.


Impervio	ous Cover		ting Loads f ious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
89	264,274	12.7	133.5	1,213.4	0.210	7.25	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.132	22	9,664	0.32	1,270	\$6,350
Pervious pavement	2.671	447	195,789	6.53	16,020	\$400,500

Acme

857 NJ 45 Pilesgrove, NJ 08098 Block 64, Lot 5 296,686 sq. ft. Nichomus Run Subwatershed

120

240

Feet

180

Tri-County Veterinary Hospital

816 US 40, Pilesgrove, NJ 08098Block 65, Lot 7.02439,214 sq. ft.Nichomus Run Subwatershed

One or more bioretention systems could be installed along the rear parking lot to manage its stormwater runoff. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover		ting Loads ious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
5	19,980	1.0	10.1	91.7	0.020	0.55	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.061	10	4,466	0.15	590	\$2,950

Tri-County Veterinary Hospital

816 US 40, Pilesgrove, NJ 08098 Block 65, Lot 7.02 439,214 sq. ft. Nichomus Run Subwatershed

Woodstown Preschool Academy

343 Lincoln Road, Pilesgrove, NJ 08098Block 9, Lot 3.03123,844 sq. ft.Oldmans Creek Subwatershed

The buildings' downspouts could be routed to bioretention systems for improved infiltration and aesthetic appeal. The parking lot's runoff could be better managed by pervious pavement. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.

Impervio	ous Cover		ting Loads f ious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
17	20,748	1.0	10.5	95.3	0.020	0.57	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.027	5	1,990	0.07	260	\$1,300
Pervious pavement	0.151	25	11,079	0.37	900	\$22,500

Woodstown Preschool Academy

343 Lincoln Road, Pilesgrove, NJ 08098Block 9, Lot 3.03123,844 sq. ft.Oldmans Creek Subwatershed

Camp Crockett County Park

148 Avis Mill Road, Pilesgrove, NJ 08098Block 81, Lot 142,246,029 sq. ft.Salem River Subwatershed

The site's paved surfaces could be repaved with pervious pavement. Buildings could use rainwater harvesting systems to collect their runoff. Bioretention systems could be implemented to intercept runoff before it reaches the nearby lake. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.

Impervio	ous Cover		ting Loads vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
2	49,301	2.4	24.9	226.4	0.040	1.35	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.283	47	20,757	0.69	2,720	\$13,600
Pervious pavement	0.157	26	11,512	0.38	940	\$23,500
Rainwater harvesting	0.016	3	2,446	0.08	5,000 (gal)	\$10,000

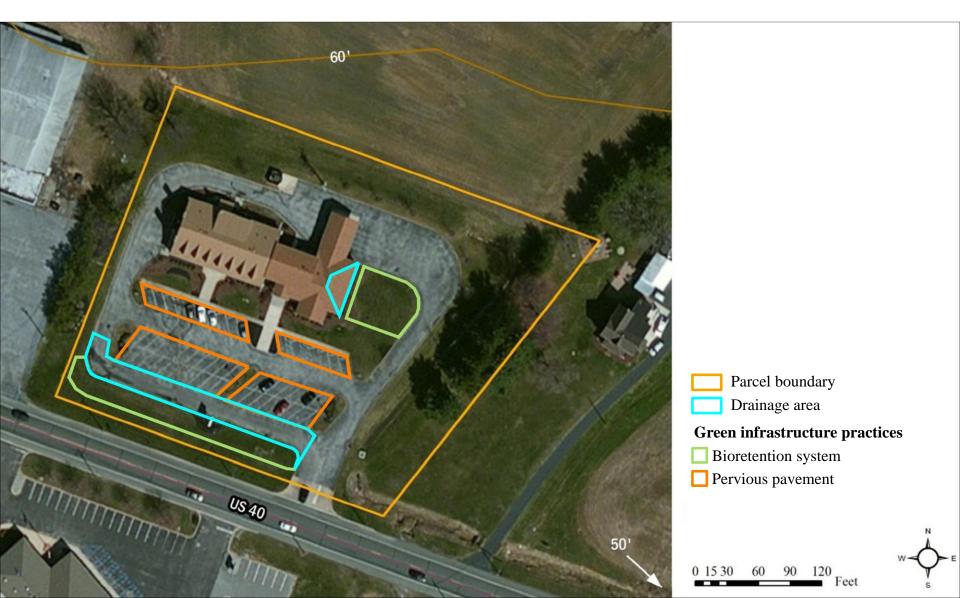
Camp Crockett County Park

148 Avis Mill Road, Pilesgrove, NJ 08098 Block 81, Lot 14 2,246,029 sq. ft. Salem River Subwatershed

Franklin Bank

1179 US 40 Pilesgrove, NJ 08098Block 40, Lot 12.06119,518 sq. ft.Salem River Subwatershed

All of the parking spaces could be repaved with pervious pavement. The building and portions of the paved lot could be routed to bioretention systems. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.


Impervio	ous Cover		ting Loads f ious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
55	65,539	3.2	33.1	300.9	0.050	1.80	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.151	25	11,093	0.37	1,450	\$7,250
Pervious pavement	0.260	44	19,059	0.64	1,560	\$39,000

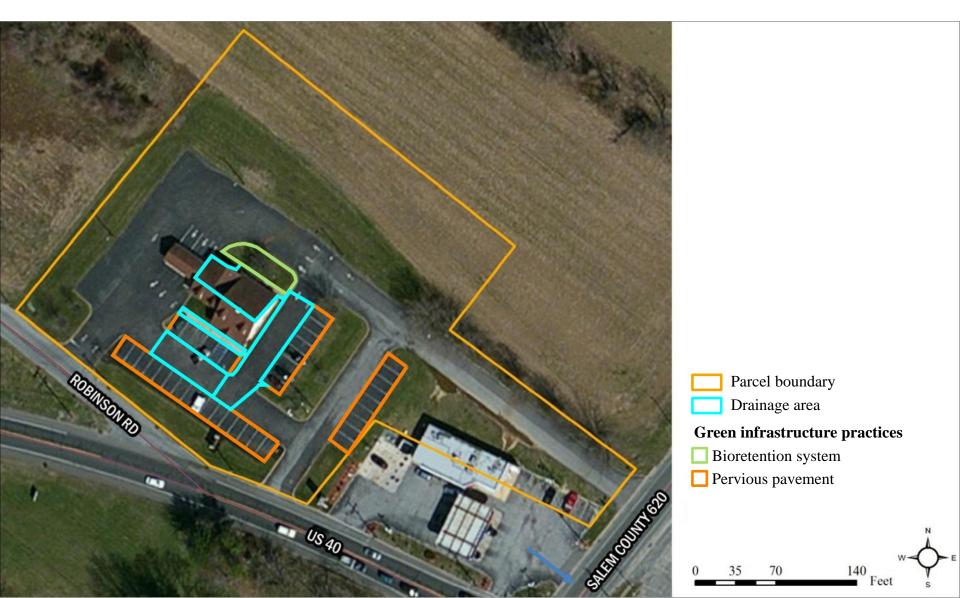
Franklin Bank

1179 US 40 Pilesgrove, NJ 08098 Block 40, Lot 12.06 119,518 sq. ft. Salem River Subwatershed

Fulton Bank of New Jersey

843 US 40 Pilesgrove, NJ 08098Block 25, Lot 11.01110,387 sq. ft.Salem River Subwatershed

Stormwater runoff from the sidewalk and parking lot can be discharged to pervious pavement. A bioretention system can be installed to capture roof runoff. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.


Impervious Cover		Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
64	70,238	3.4	35.5	322.5	0.060	1.93	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.052	9	3,837	0.13	500	\$2,500
Pervious pavement	0.325	54	23,786	0.79	1,950	\$48,750

Fulton Bank of New Jersey

843 US 40 Pilesgrove, NJ 08098 Block 25, Lot 11.01 110,387 sq. ft. Salem River Subwatershed

Lighthouse Christian Center

90 Fox Road, Pilesgrove, NJ 08098 Block 80, Lot 2.03 125,820 sq. ft. Salem River Subwatershed

Bioretention systems could be installed in grass areas to treat runoff from the building and its paved lot. Grass pavers could replace compacted and eroded unpaved surfaces to enhance infiltration. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.

Impervio	Impervious Cover		ting Loads f ious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
34	42,766	2.1	21.6	196.4	0.030	1.17	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.217	36	15,925	0.53	2,090	\$10,450
Pervious pavement	0.062	10	4,548	0.15	370	\$9,250

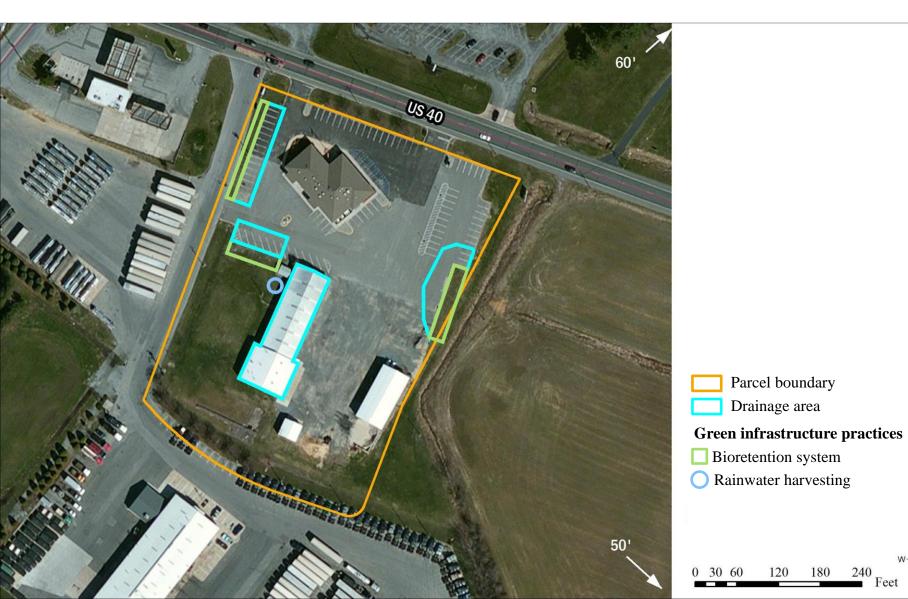
Lighthouse Christian Center

90 Fox Road, Pilesgrove, NJ 08098 Block 80, Lot 2.03 125,820 sq. ft. Salem River Subwatershed

Pilesgrove Municipal Building

1180 US 40 Pilesgrove, NJ 08098 Block 38, Lot 12 194,917 sq. ft. Salem River Subwatershed

Runoff from the parking lots could be collected in bioretention systems. Rainwater harvesting systems could collect the runoff from building rooftops. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.


Impervious Cover		Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
69	134,659	6.5	68.0	618.3	0.100	3.69	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.251	42	18,431	0.61	2,410	\$12,050
Rainwater harvesting	0.130	13	5,000	0.20	5,000 (gal)	\$10,000

Pilesgrove Municipal Building

1180 US 40 Pilesgrove, NJ 08098 Block 38, Lot 12 194,917 sq. ft. Salem River Subwatershed

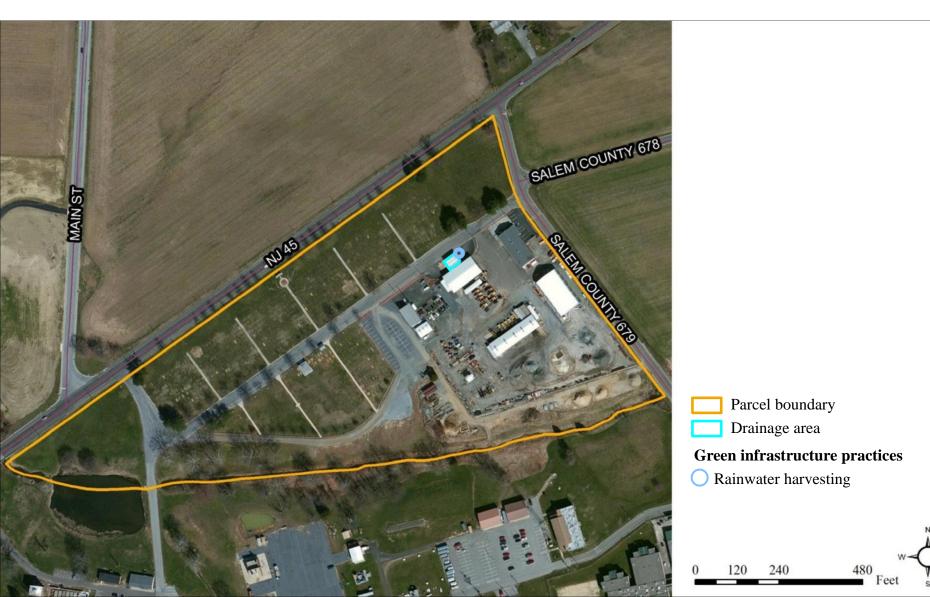
240

Feet

Salem County Public Works

153 Cemetery Road, Woodstown, NJ 08098 Block 67, Lot 1 942,413 sq. ft. Salem River Subwatershed

The downspout can be disconnected and routed to a rainwater harvesting system for washing trucks. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.


Impervio	Impervious Cover		ting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
20	190,705	9.2	96.3	875.6	0.150	5.23	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Rainwater harvesting	0.014	2	2,154	0.07	5,000 (gal)	\$10,000

Salem County Public Works

153 Cemetery Road, Woodstown, NJ 08098 Block 67, Lot 1 942,413 sq. ft. Salem River Subwatershed

Sharptown United Methodist Church

24 Church Street, Pilesgrove, NJ 08098Block 53, Lot 763,841 sq. ft.Salem River Subwatershed

Much of the parking lot and rooftops can be discharged to bioretention systems. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.

Impervious Cover		Existing Loads from Impervious Cover (lbs/yr)			Runoff Volume from Impervious Cover (Mgal)		
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''	
74	47,360	2.3	23.9	217.5	0.040	1.30	

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.458	77	33,548	1.12	4,390	\$21,950

Sharptown United Methodist Church

24 Church Street, Pilesgrove, NJ 08098 Block 53, Lot 7 63,841 sq. ft. Salem River Subwatershed

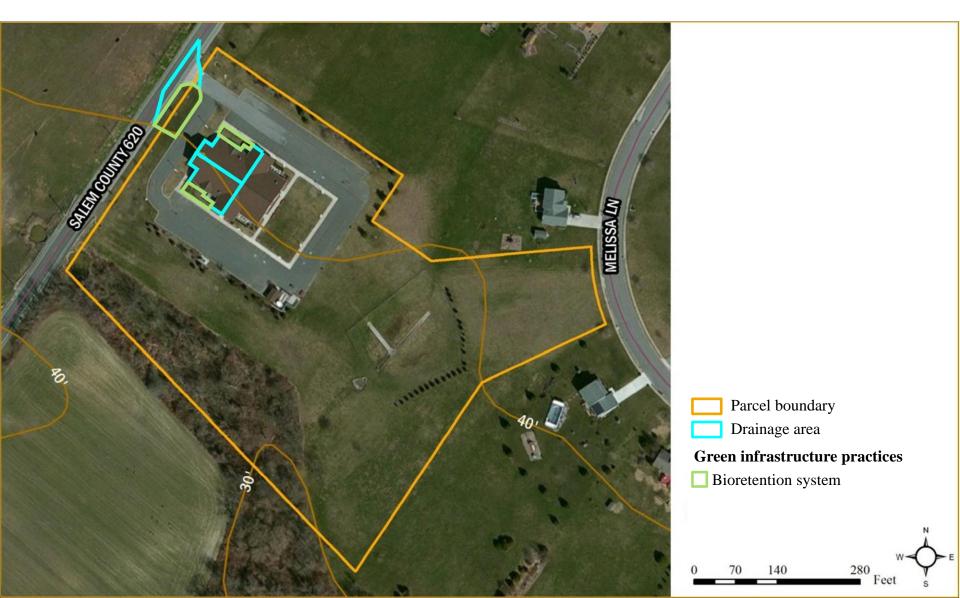
100

Feet

The Church of Jesus Christ of Latter-day Saints

1194 Kings Highway, Pilesgrove, NJ 08098 Block 30, Lot 10.03 361,643 sq. ft. Salem River Subwatershed

Stormwater runoff from the roof can be captured in bioretention systems. Bioretention systems can be installed to intercept road runoff before it reaches the nearby river. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.


Imper	vious Cover		ting Loads f vious Cover		Runoff Volume from Impervious Cover (Mgal)					
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''				
23	81,664	3.9	41.2	375.0	0.064	2.24				

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.310	52	22,739	0.76	2,980	\$14,900

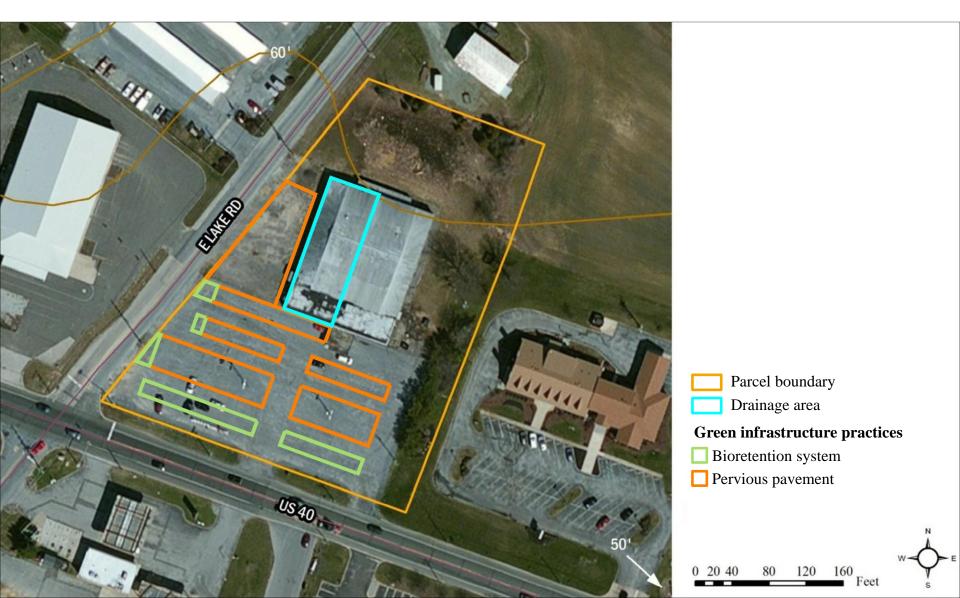
The Church of Jesus Christ of Latter-day Saints

1194 Kings Highway, Pilesgrove, NJ 08098 Block 30, Lot 10.03 361,643 sq. ft. Salem River Subwatershed

Wood Lanes

1173 US 40 Pilesgrove, NJ 08098Block 40, Lot 12.05118,567 sq. ft.Salem River Subwatershed

Grass pavers could be installed along the western edge of the building to treat its runoff. The parking lot could be retrofitted with bioretention systems and pervious pavement. A preliminary soil assessment for this site suggests that the site's existing soils have suitable drainage characteristics for green infrastructure.


Impervio	ous Cover		ting Loads f ious Cover		Runoff Volume from In	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
69	82,292	4.0	41.6	377.8	0.060	2.26

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.113	19	8,310	0.28	1,090	\$5,450
Pervious pavement	0.764	128	56,003	1.87	4,580	\$114,500

Wood Lanes

1173 US 40 Pilesgrove, NJ 08098 Block 40, Lot 12.05 118,567 sq. ft. Salem River Subwatershed

Woodstown NJ State Police Station

769 US 40 Pilesgrove, NJ 08098Block 24, Lot 11.01120,550 sq. ft.Salem River Subwatershed

Bioretention systems installed in the grass would receive runoff from the roof and driveway via curb cuts. The rear parking lot could be retrofitted with pervious pavement. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.

Impervio	ous Cover		ting Loads f vious Cover		Runoff Volume from In	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
31	36,889	1.8	18.6	169.4	0.030	1.01

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention systems	0.121	20	8,841	0.29	1,160	\$5,800
Pervious pavement	0.211	35	15,469	0.52	3,360	\$84,000

Woodstown NJ State Police Station

769 US 40 Pilesgrove, NJ 08098 Block 24, Lot 11.01 120,550 sq. ft. Salem River Subwatershed

Woodstown Veterinary Hospital

1250 US 40 Woodstown, NJ 08098Block 80, Lot 2.0467,784 sq. ft.Salem River Subwatershed

A bioretention system could be installed in the front lawn to treat the driveway's runoff and enhance the site's aesthetic appeal. A preliminary soil assessment for this site suggests that more soil testing would be required to determine the existing soil's suitability for green infrastructure.

Impervio	ous Cover		ting Loads f vious Cover		Runoff Volume from In	pervious Cover (Mgal)
%	sq. ft.	ТР	TN	TSS	For the 1.25" Water Quality Storm	For an Annual Rainfall of 44''
38	26,047	1.3	13.2	119.6	0.020	0.71

Recommended Green Infrastructure Practices	Recharge Potential (Mgal/yr)	TSS Removal Potential (lbs/yr)	Maximum Volume Reduction Potential (gal/storm)	Peak Discharge Reduction Potential (cu. ft./second)	Estimated Size (sq. ft.)	Estimated Cost
Bioretention system	0.029	5	2,117	0.07	280	\$1,400

Woodstown Veterinary Hospital

1250 US 40 Woodstown, NJ 08098 Block 80, Lot 2.04 67,784 sq. ft. Salem River Subwatershed

c. Summary of Existing Conditions

Summary of Existing Site Conditions

											Runoff Volumes	from I.C.
					Exis	sting Annual	Loads		I.C.	I.C.	Water Quality Storm	
Subwatershed/Site Name/GI Practice/ Total Site Info	Area (ac)	Area (SF)	Lot	Block	TP (lb/yr)	TN (lb/yr)	TSS (lb/yr)	I.C. %	Area (ac)	Area (SF)	(1.25" over 2-hours) (Mgal)	Annual (Mgal)
NICHOMUS RUN SUBWATERSHED	16.89	735,900			13.7	143.6	1,305.1		6.53	284,254	0.221	7.80
Acme Total Site Info	6.81	296,686	5	64	12.7	133.5	1,213.4	89	6.07	264,274	0.206	7.25
Tri-County Veterinary Hospital Total Site Info	10.08	439,214	7.02	65	1.0	10.1	91.7	5	0.46	19,980	0.016	0.55
OLDMANS CREEK SUBWATERSHED	2.84	123,844			1.0	10.5	95.3		0.48	20,748	0.016	0.57
Woodstown Preschool Academy Total Site Info	2.84	123,844	3.03	9	1.0	10.5	95.3	17	0.48	20,748	0.016	0.57
SALEM RIVER SUBWATERSHED	102.65	4,471,469			39.9	417.9	3,799.2		19.00	827,460	0.645	22.69
Camp Crockett County Park Total Site Info	51.56	2,246,029	14	81	2.4	24.9	226.4	2	1.13	49,301	0.038	1.35
Franklin Bank Total Site Info	2.74	119,518	12.06	40	3.2	33.1	300.9	55	1.50	65,539	0.051	1.80
Fulton Bank of New Jersey Total Site Info	2.53	110,387	11.01	25	3.4	35.5	322.5	64	1.61	70,238	0.055	1.93
Lighthouse Christian Center Total Site Info	2.89	125,820	2.03	80	2.1	21.6	196.4	34	0.98	42,766	0.033	1.17
Pilesgrove Municipal Building Total Site Info	4.47	194,917	12	38	6.5	68.0	618.3	69	3.09	134,659	0.105	3.69
Salem County Public Works Total Site Info	21.63	942,413	1	67	9.2	96.3	875.6	20	4.38	190,705	0.149	5.23

											Runoff Volumes	from I.C.
					Existing Annual Loads			I.C.	I.C.	Water Quality Storm		
Subwatershed/Site Name/GI Practice/ Total Site Info	Area (ac)	Area (SF)	Lot	Block	TPTNTSS(lb/yr)(lb/yr)(lb/yr)		I.C. %	Area (ac)	Area (SF)	(1.25" over 2-hours) (Mgal)	Annual (Mgal)	
Sharptown United Methodist Church Total Site Info	1.47	63,841	7	53	2.3	23.9	217.4	74	1.09	47,360	0.037	1.30
The Church of Jesus Christ of Latter-day Saints Total Site Info	8.30	361,643	10.03	30	3.9	41.2	374.9	23	1.87	81,664	0.064	2.24
Wood Lanes Total Site Info	2.72	118,567	12.05	40	4.0	41.6	377.8	69	1.89	82,292	0.064	2.26
Woodstown NJ State Police Station Total Site Info	2.77	120,550	11.01	24	1.8	18.6	169.4	31	0.85	36,889	0.029	1.01
Woodstown Veterinary Hospital Total Site Info	1.56	67,784	2.04	80	1.3	13.2	119.6	38	0.60	26,047	0.020	0.71

d. Summary of Proposed Green Infrastructure Practices

Summary of Proposed Green Infrastruture Practices

	Deterrit			1	Mor V-1	Deals Diret				1	
	Potential Mar	nagement Area	Recharge	TSS Removal	Max Volume Reduction	Peak Discharge Reduction	Size of	Unit		Total	I.C.
		•	_						TT '4		
Subwatershed/Site Name/GI Practice/ Total Site Info	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
	(SF)	(ac)	(Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$)		(\$)	%
NICHOMUS RUN SUBWATERSHED	109,930	2.52	2.864	479	209,919	7.00	17,880			\$409,800	38.7%
1 Acme											
Bioretention system	5,060	0.12	0.132	22	9,664	0.32	1,270	5	SF	\$6,350	1.9%
Pervious pavement	102,530	2.35	2.671	447	195,789	6.53	16,020	25	SF	\$400,500	38.8%
Total Site Info	107,590	2.47	2.803	469	205,453	6.85	17,290			\$406,850	40.7%
2 Tri-County Veterinary Hospital											
Bioretention system	2,340	0.05	0.061	10	4,466	0.15	590	5	SF	\$2,950	11.7%
Total Site Info	2,340	0.05	0.061	10	4,466	0.15	590			\$2,950	11.7%
OLDMANS CREEKSUB WATERSHED	6,840	0.16	0.178	30	13,069	0.44	1,160			\$23,800	33.0%
3 Woodstown Preschool Academy											
Bioretention system	1,040	0.02	0.027	5	1,990	0.07	260	5	SF	\$1,300	5.0%
Pervious pavement	5,800	0.13	0.151	25	11,079	0.37	900	25	SF	\$22,500	28.0%
Total Site Info	6,840	0.16	0.178	30	13,069	0.44	1,160			\$23,800	33.0%
SALEM RIVER SUBWATERSHED	153,351	3.52	3.875	649	285,575	9.55	46,830			444,350	18.5%
4 Camp Crockett County Park											
Bioretention system	10,870	0.25	0.283	47	20,757	0.69	2,720	5	SF	\$13,600	22.0%
Pervious pavement	6,030	0.14	0.157	26	11,512	0.38	940	25	SF	\$23,500	12.2%
Rainwater harvesting	1,280	0.03	0.016	3	2,446	0.08	5,000	2	gal	\$10,000	2.6%
Total Site Info	18,180	0.42	0.456	76	34,715	1.15	8,660			\$47,100	36.9%
5 Franklin Bank											
Bioretention systems	5,810	0.13	0.151	25	11,093	0.37	1,450	5	SF	\$7,250	8.9%
Pervious pavement	9,980	0.23	0.260	44	19,059	0.64	1,560	25	SF	\$39,000	15.2%
Total Site Info	15,790	0.36	0.411	69	30,152	1.01	3,010			\$46,250	24.1%
6 Fulton Bank of New Jersey											
Bioretention system	2,011	0.05	0.052	9	3,837	0.13	500	5	SF	\$2,500	2.9%
Pervious pavement	12,455	0.29	0.325	54	23,786	0.79	1,950	25	SF	\$48,750	17.7%
Total Site Info	14,466	0.33	0.377	63	27,623	0.92	2,450			\$51,250	20.6%

1

Summary of Proposed Green Infrastruture Practices

	Dotontial Mar	agamant Auga			Max Volume	Peak Discharge					
	Potential Mar	agement Area	Recharge	TSS Removal	Reduction	Reduction	Size of	Unit		Total	I.C.
Subwatershed/Site Name/GI Practice/ Total Site Info	Area	Area	Potential	Potential	Potential	Potential	BMP	Cost	Unit	Cost	Treated
Subwatershed/Site Name/Of Fractice/ Total Site into	(SF)	(ac)	Mgal/yr)	(lbs/yr)	(gal/storm)	(cfs)	(SF)	(\$)	Unit	(\$)	%
	(51)	(ac)	(Wigul/yi)	(103/ 91)	(gai/storin)	(013)	(51)	(Ψ)		(Ψ)	70
7 Lighthouse Christian Center											
Bioretention systems	8,340	0.19	0.217	36	15,925	0.53	2,090	5	SF	\$10,450	19.5%
Pervious pavement	2,380	0.05	0.062	10	4,548	0.15	370	25	SF	\$9,250	5.6%
Total Site Info	10,720	0.25	0.279	47	20,473	0.68	2,460			\$19,700	25.1%
8 Pilesgrove Municipal Building											
Bioretention systems	9,650	0.22	0.251	42	18,431	0.61	2,410	5	SF	\$12,050	7.2%
Rainwater harvesting	6,415	0.15	0.079	13	5,000	0.20	5,000	2	gal	\$10,000	4.8%
Total Site Info	16,065	0.37	0.331	55	23,431	0.81	7,410			\$22,050	11.9%
9 Salem County Public Works											
Rainwater harvesting	1,130	0.03	0.014	2	2,154	0.07	5,000	2	gal	\$10,000	0.6%
Total Site Info	1,130	0.03	0.014	2	2,154	0.07	5,000			\$10,000	0.6%
10 Sharptown United Methodist Church											
Bioretention systems	17,570	0.40	0.458	77	33,548	1.12	4,390	5	SF	\$21,950	37.1%
Total Site Info	17,570	0.40	0.458	77	33,548	1.12	4,390			\$21,950	37.1%
11 The Church of Jesus Christ of Latter-day Saints											
Bioretention systems	11,910	0.27	0.310	52	22,739	0.76	2,980	5	SF	\$14,900	14.6%
Total Site Info	11,910	0.27	0.310	52	22,739	0.76	2,980			\$14,900	14.6%
12 Wood Lanes											
Bioretention systems	4,350	0.10	0.113	19	8,310	0.28	1,090	5	SF	\$5,450	5.3%
Pervious pavement	29,330	0.67	0.764	128	56,003	1.87	4,580	25	SF	\$114,500	35.6%
Total Site Info	33,680	0.77	0.878	147	64,313	2.15	5,670			\$119,950	40.9%
13 Woodstown NJ State Police Station											
Bioretention systems	4,630	0.11	0.121	20	8,841	0.29	1,160	5	SF	\$5,800	12.6%
Pervious pavement	8,100	0.19	0.211	35	15,469	0.52	3,360	25	SF	\$84,000	22.0%
Total Site Info	12,730	0.29	0.332	56	24,310	0.81	4,520			\$89,800	34.5%
14 Woodstown Veterinary Hospital											
Bioretention system	1,110	0.03	0.029	5	2,117	0.07	280	5	SF	\$1,400	4.3%
Total Site Info	1,110	0.03	0.029	5	2,117	0.07	280			\$1,400	4.3%