dysregulation in pregnancy, fetuses, and neonates.

Shiao Chan, Neil Gittoes, Jayne Franklyn, *Mark Kibby
*Division of Reproductive and Child Health, Level 3, Birmingham Women’s Hospital, Birmingham B15 2TG, UK; and Division of Medical Sciences, University of Birmingham


History of torture

Sir—In respect of Giovanni Maio’s item (May 19, p 1609) on the history of medical involvement in torture, I would like to say a word in defence of medical involvement in torture—then and now.

Melody Willems and colleagues propose an esp variant as a marker of epidemic hospital strains of vancomycin-resistant E faecium (VRE). The esp gene (encoding enterococcal surface protein) has been associated with increased virulence in Enterococcus faecalis.1,2 We designed PCR primers (5’-GGT CAC AAA GCC CAA CTG GT and 5’-ACG TCG AAA GTT CGA TTT CC) suitable for amplifying 407 bp fragments of the esp variants from E faecalis or E faecium to facilitate rapid screening for this proposed virulence marker. We used these primers to screen 107 isolates of E faecium for esp; 84 isolates were from UK hospital patients and 23 from animals, raw meat, or sewage. The hospital isolates included 76 collected during a study of the prevalence of antibiotic resistance among consecutively isolated, clinically relevant gram-positive pathogens from 25 sentinel laboratories; they were not selected on the basis of any particular resistance phenotype. The esp was not detected in any of the 23 non-human isolates, which included eight VRE and 15 vancomycin-susceptible (VSE) isolates. This finding confirmed the apparent absence of esp noted previously in non-human isolates of E faecium.2,3

However, esp was detected in 53 (63%) of the hospital isolates. It was present in 17 (61%) of 28 VRE from 13 hospitals, compared with 36 (64%) of 56 VSE from 21 hospitals. We did sequence analysis of two PCR products (from one VRE and one VSE), and compared them with GenBank sequence AF034779 to confirm the identities.

These data show that esp is common in non-selected strains of E faecium from UK hospital patients and contrast with the results of Shankar and colleagues,2 who found esp in none of 34 clinical E faecium isolates, and also with those of Willems and colleagues who detected the gene only in VRE strains associated with hospital outbreaks, but who did not screen VSE strains.

In our hospital isolates, esp was more common in E faecium isolated from urine (23 of 27 isolates from 14 hospitals) than in isolates from all other sites (30 of 57 from 21 hospitals,1 p=0.008). This significance was maintained, but much reduced, when we compared urine isolates with those from blood cultures. In E faecalis, esp contributes to colonisation of and persistence in the urinary tract;2 our data suggest a similar role for the E faecium variant of this peptide.

We thank Rob Willems for providing the unpublished partial sequence of the E faecium esp variant.

Neil Woodford, Mehrniam Soltani, Katherine Hardy
*Antibiotic Resistance Monitoring and Reference Laboratory, Central Public Health Laboratory, London NW9 5HT, UK; and Preston Public Health Laboratory, Preston (e-mail: nwoodford@phls.org.uk)


