Economic Considerations of Water Pollution Trading

45% of assessed waters don’t support designated uses

40,000 TMDLs need to be developed

TMDL implementation cost estimated between $1 and $4 billion

Trading offers potential to optimize resources within a watershed to achieve water quality goals at least cost with ancillary environmental, economic and community benefits
Economic Considerations of Water Pollution Trading

Benefits

• Increases flexibility and expands range of watershed improvement options
• Reduces cost by taking advantage of differences in control costs among sources and economies of scale
• Can engage participants who either have no regulatory requirement to reduce pollution, or who have already met their regulatory requirements
• Creates market demand for innovative technologies
• Provides additional benefits, including: reducing other pollutants, providing habitat, increasing economic activity associated with improved water resource quality
Economic Considerations of Water Pollution Trading

Types of trading approaches

- Load allocation across a class of regulated facilities
- Regulated facility establishes a fund that is used to finance an array of nonpoint source control and environmental restoration projects throughout watershed
- Market-base trading between regulated and unregulated (nonpoint) sources
 - Bilateral contractual arrangements
 - Tradable credits and banking
Economic Considerations of Water Pollution Trading

Challenges

• Finding sufficient drivers (incentives for participation)
• Facilitating trades that make economic sense (substantial differences in control costs among trading partners)
• Developing economic instruments (e.g. contracts) that include measurable performance standards tied to water quality results, and that establish equitable contractual arrangements
• Reducing transaction costs (utilizing efficient administrative procedures and sufficient transparency and stakeholder engagement)
Economic Considerations of Water Pollution Trading

Trading Project Examples

- Long Island Sound Nitrogen Trading
- Piasa Creek Watershed Trading Project
- Tualatin River Trading Project
USDA Cooperative State Research, Education and Extension Service, Regional Water Quality Program

Objectives

- Coordinate the Land Grant Universities within US EPA Region 2
- Integrate research, education and extension
- Build partnerships with US EPA, other federal, state and local agencies and other academic institutions

Partners

- Cornell University (New York)
- Rutgers University (New Jersey)
- University of Puerto Rico
- University of the Virgin Islands (USVI)
Regional Trading Initiative

- Exploring trading opportunities in region (dialogue with states, EPA)
- Identifying potential roles for the Land Grant Universities
 - Engaging faculty, agencies, utilities and other potential project participants
 - Facilitating collaboration
 - Assessing trading feasibility
 - Trading program design, implementation, evaluation
- Feasibility assessment for Raritan Basin in New Jersey